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ABSTRACT

Progress in AFOSR-supported research on laser physics and

laser techniques for the period 15 March 1990-15 March 1991 is

summarized, including work on laser resonators and laser resonator

and optical beam software: new techniques for laser beam charac-

terization and laser beam quality measurement- the generation of

ultrashort optical pulses in the infrared; and measurement of a fun-

damental excess quantum noise effect in ultrastable laser oscillators.
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I. INTRODUCTION

This is the annual report and summary of accomplishments for the second year of

a three-year program of research on laser physics and laser techniques carried out in

the research group of Professor A. E. Siegman at Stanford University and supported

by AFOSR Contract No. F49620-89-K-0004, covering the period from 15 March 1990

to 15 March 1991.

This report briefly summarizes results on laser resonators and laser resonator

and optical beam software; new techniques for laser beam characterization and laser

beam quality measurement; the generation of ultrashort optical pulses in the infrared;

and the measurement of a fundamental excess quantum noise effect in ultrastable

laser oscillators. Accomplishments in each of the areas of research covered by this

program are described in more detail in the following sections. and in various reprints

or preprints attached as Appendices

II. RAY-PULSE MATRIX ANALYSIS

A very useful ray-pulse matrix approach to optical pulse propagation was devel-

oped earlier under this program by Dr. A. Kostenbauder, as described in last year's

annual report. This analysis appeared in print during the current period in the journal

article:

A. G. Kostenbauder, "Ray-pulse matrices: A rational treatment for

dispersive optical systems," IEEE J. Quantum Electron. QE-26.

1148-1157 (June 1990).

This particular project is now completed; and a reprint of this publication is attached

as Appendix A.
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I1. OPTICAL BEAM AND RESONATOR CALCULATIONS

Our group has made many contributions in previous years to optical resonator

concepts, and has also done much work on fundamental methods for the analysis of

optical beam propagation and the calculation of laser resonator modes; and thesc

topics continue to be a productive area of work in the group.

In particular during the current reporting period we have completed the devel-

opment of an integrated package of software programs with which optics engineers

and laser researchers can carry out optical beam propagation and resonator mode cal-

culations in real time on personal desktop computers. This package, which we have

named PARAXIA because of its basic dependence on the paraxial wave approximation.

includes:

o An ABCD program for carrying out complex-valued ABCD matrix calculations.

including two-transverse-dimension or astigmatic systems. This program is par-

ticularly useful in both stable and unstable optical resonator evaluation and in

optical system design.

o A program FRESNEL which carries out accurate optical beam propagation and

diffraction calculations in rectangular or radial coordinates using fast transform

algorithms. This program also includes scripting, iteration, and external function

capabilities for doing iterative Fox-and-Li resonator mode calculations.

o A program VSOURCE which implements the fast and efficient virtual source

algorithm for calculating the modes of rectangular and circular unstable laser

resonators, including both lowest and higher-order modes.

o A VRM program for designing and evaluating the mode properties of gaussian

variable-reflect ivity-mirror resonators.

This software package was initially made available to other university, industrial and

government laser laboratories through the Stanford Software Distribution Center, and

at least several dozen copies were distributed to other laser researchers in this fashion,

including site licenses to several large laser firms. A brochure describing this pack-

age and its capabilities is attached as Appendix B. We have received very favorable

comments concerning the usefulness of this software from a number of university and

industrial users. The package has now been licensed to Genesee Optics Software. Inc.,

of Rochester. NY, a widely known vendor of lens design and optics software packages
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for the Macintosh, with the expectation that it will receive still wider distribution and

use in the future through this channel.

These programs were initially written primarily for our internal use on this project.

and we have made extensive use of this software ourselves in our own resonator design

and laser beam quality research, as described in later sections of this report. Two

such projects which were carried out using this software and which are now essentially

complete, althuugh the results are still being prepared for submission, are:

K. Yasui, P. Mussche, J-L Doumont, and A. E. Siegman, "Off-axis

one-sided positive and negative branch unstable resonators," Appl.

Optics, in preparation (1991).

K. Yasui, P. Mussche, J-L Doumont, and A. E. Siegman, "Compar-

ison of misalignment sensitivities for positive and negative branch

strip confocal unstable resonators," Appl. Optics. in preparation

(1991).

A PhD dissertation reporting on the development of these programs and some of

their applications was also essentially completed during the current period and will be

submitted early in the coming period:

Jean-luc Doumont. Laser Beam and Resonator Calculations on

Desktop Computers, Ph.D. Dissertation, Department of Applied

Physics, Stanford University, to be submitted (June 1991).

The abstract of this forthcoming dissertation is attached as Appendix C.

As a secondary effort in resonator theory, we also carried out during this reporting

period a slightly extended analysis and evaluation of the so-called self-filtering unstable

resonator (SFUR) design concept, leading to a pending journal article:

A. E. Siegman, "Performance limitations of the self-filtering unsta-

ble resonator," Optics Commun., accepted for publication (1991).

A preprint of this communication is attached as Appendix D. The primary point to

this brief communication is that the SFUR concept, which has been widely discussed

by others, does offer very good mode properties for laser systems with low Fresnel

numbers; but it is not a useful solution for the more difficult (and generally more

realistic) case of large-Fresnel-number laser resonators. The reason is that as the

Fresnel number increases much above a few times unity, the output coupling of the

SFUR design inherently must become very large, or the effective reflectivity of the
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output mirror becomes very small, and so this type of resonator cannot be used with

any normal gain medium.

An overall survey of advances in laser resonators and resonator theory over the

past two decades, including a review of current and expected future developments

in this field, was also prepared and presented as an invited lecture at the 1990

CLEO/QELS meeting:

A. E. Siegman, "Laser Resonators: Retrospective and Prospective",

R.V. Pole Memorial Lecture. CLEO/QELS '90, Anaheim., CA (21

May 1990).

An outline of this lecture and associated transparencies is attached as Appendix E to

this report.

IV. LASER BEAM QUALITY DEFINITION AND MEASUREMENT

A major new area of research in our group during the present and the immediately

preceding reporting periods has been the general topic of laser beam quality definition

and measurement. This topic is a major new effort in our group, although it grows

directly out of our earlier research interests in optical beams and resonators; and we

believe it may have a substantial impact on the development and improvement of many

types of lasers.

By way of background, since the earliest days of the laser there has been great

interest in the transverse mode properties of lasers, and much effort has been devoted

to obtaining laser output beams that were "diffraction limited" in character, since this

characteristic of a laser beam has a critical impact on the usefulness of a laser beam,

e.g., on its propagation and beam-spread properties for laser radars, or on the focusing

properties of a laser beam for laser materials processing. Despite the importance of

laser beam quality, however, there has been very little work in the past either on

rigorous and meaningful definitions of laser beam quality, or on practical tools for

accurate measurement of these laser beam characteristics.

In work under this program during the preceding reporting period our group first

developed a very meaningful and widely useful, but also precise and universal definition

for laser beam quality. This work produced a rigorous definition for the so-called "M2

factor" of a laser beam, based on the spatial and angular second moments or standard

deviations of a laser beam and their space-beamwidth product. Our analysis, which
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was based on the so-called "moments method" for laser beam propagation. in fact gave

a complete description of the propagation properties of any arbitrary real, distorted,

multimode, or astigmatic laser beam in terms of only six easily measurable parameters:

the real-beam waist size, the real-beam waist location, and the real-beam quality factor

M!2 in each transverse coordinate. The motivation behind this work was to provide

quantitative, measureable, and widely useful measures both of "beam quality" and of

beam propagation parameters in the form of a few numbers which can be attached to

a given optical beam and be valid at any point along the beam, rather than merely

stating some quantitative measure of performance such as far-field brightness in watts

per steradian or focused spot size in microns for a specific laser device under specific

operating conditions.

This earlier analysis focused on the axial variation of the intensity profile of an

arbitrary real beam. As one extension of this analysis, during the current period we

were able to extend this analysis to define an effective spherical radius of curvature

for an arbitrary laser beam, even one with an arbitrarily distorted or wrinkled phase

front. This result has now been published as:

A. E. Siegman, "Defining the effective radius of curvature for a

nonideal optical beam," IEEE J. Quantum Electron. QE-27, 1146-

1148 (May 1991).

This new result has proven to be extremely useful in evaluating the effects on beam

quality of, for example, phasefront distortion by spherical aberration or other phase

aberration effects. A reprint of this publication is attached as Appendix F.

In parallel with and partly based on these theoretical developments, at least one

commercial firm (Coherent, Inc.) has developed over the past two years a compar-

atively simple and practical instrument for measuring laser beam quality and beam

propagation parameters in real time. For simplicity this particular instrument mea-

sures beam diameter in terms of a knife-edge clip width, rather than a direct evaluation

of the second moment. The approximations involved in this design compromise are

evaluated in a joint publication from our two laboratories:

A. E. Siegman. M. W. Sasnett, and T. F. Johnston. Jr., "Choice

of clip levels for beam width measurements using knife-edge tech-

niques". IEEE J. Quantum Electron. QE-27, 1098-1104 (April

1991).



a reprint of which is attached as Appendix G. Our group has also been using one of

the Coherent instruments for various laser beam evaluations as described below.

In addition, since the Coherent instrument operates only with cw beams, while

the beam parameters of pulsed lasers are also of substantial interest, during the past

period we assembled and tested in our laboratory a single-shot pulsed beam quality

and beam propagation measurement system using CCD-camera arrays and computer

frame-grabber boards. This approach permits detailed evaluation of the measured

beam profiles and evaluation of the beam quality using various algorithms in software.

This work is described in:

J. A. Ruff and A. E. Siegman, "Single pulse laser beam quality

measurements using a CCD camera system," Appi. Optics, accepted

for publication (1991).

A preprint of this publication is attached as Appendix H. An improved version of

this approach is expected to be very useful fi)r several types of pulsed lasers, such as

Q-switched solid-state lasers and pulsed excimer lasers.

As one particularly interesting example of the utility of beam quality measure-

ments, we have very recently begun a series of measurements of the laser beam qual-

ity and beam propagation factors in both transverse directions simultaneously for a

variety of semiconductor diode lasers, including both narrow-stripe single-mode and

wide-stripe multimode diode lasers. These measurements are being made using both

the Coherent beam quality measuring instrument and our own CCD-camera-based

beam quality meter. Preliminary indications are that measurements of this type can

bring out very interesting new information concerning the modal properties and oscil-

lation behavior of diode lasers, including correlations between the "I nk" phenomena

that are often observed in such diode lasers and discontinuities in the beam quality

parameters. In preliminary tests of this concept we have also discovered that the beam

quality and other beam properties of wide-stripe diode lasers can be measured even in

the sub-threshold ASE region. and the variation in all of the beam parameters followed

continuously through the threshold region. Continued work in this area is presently

being carried out.



V. MEASUREMENT OF EXCESS QUANTU.Ml NOISE EFFECTS

By way of background for this section. in 1979 K. Petermann in Germany pub-

lished a theoretical analysis predicting the existence of an "excess spontaneous emission

factor" or excess quantum noise emission effect in gain-guided semiconductor diode

lasers. In 1989 under earlier AFOSR support we then published several theoretical

analyses showing that this kind of excess emission would also occur and would lead

to a sizable enhancement of the fundamental quantum noise fluctuations in any kind

of laser oscillator using an unstable optical resonator. Our analysis. aided by theoret-

ical calculations using the PARAXIA software described in Section III. showed that

the excess noise factors in a typical unstable resonator laser design could range from

several hundred to several thousand, according to our calculations.

These quantum fluctuations in turn will represent the ultimate lower limit on the

amplitude and frequency stability of any laser device using such a resonator. Environ-

mental or technical noise is usually predominant over quantum noise effects in practical

laser devices. Current developments in laser technology, however, are leading to new

laser devices with extremely small noise fluctuations and spectral widths, approaching

the quantum limit; and such ultrastable laser devices are now becoming of practi-

cal importance in ultrahigh-performance coherent optical communications systems, in

laser radars, and potentially also in gravity wave experiments. It becomes important,

therefore, to verify experimentally the existence of this excess noise emission and the

correctness of our theoretical predictions. not only for their fundamental interest as

an unusual consequence of quantum electronics, but also in order to set the ,lltimate

quantum limits on the performance of ultrastable laser devices.

We have therefore been carrying out as part of our current work a project to make

a careful and definitive measurement of this excess noise factor in an unstable-resonator

laser. During the previous and current reporting periods we designed a miniaturized

monolithic diode-pumped Nd:YAG laser system, employing diode pumping for pump

stability; a monolithic rod structure for mechanical and acoustic stability; and nitrogen

cooling of the miniature YAG rod to narrow the laser linewidth and thus obtain the

increased gain needed for the unstable cavity. During the current reporting period we

have now built and operated this la er system. using a 100 mW single-mode diode

laser pump and a 3-mm long Nl:YAG rod which is enclosed inside a liquid nitrogen

cryogenic refrigerator. The unstable resonato, is ground directly onto the monolithic
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rod, and the diameter of the unstable mode is controlled in this initial experiment

by the inverted region created hy the focused diode laser pump beam. Much of the

experimental work up to this point is summarized in the conference proceedings:

P. L Mussche and A. E. Siegman, --Enhanced Schawlow-Townes

linewidth in lasers with nonorthogonal transverse eigenmodes" in

Laser Noise, R1,jarshi Roy, ed.. Proc. SPIE 1376 (November 1990).

[Proceedings of SPIE Symposium oil Laser N(ise, OPTCON 90,

November 1990.]

A reprint of this report is attached as Appendix I. Since then we have also designed

and assembled a Pound-Drever cavity stabilization system which is used to measure

the quantum frequency fluctuations of our experimental laser. In this system a slow

feedback loop is used to lock the reference cavity to the laser frequency, so that the

Pound-Drever system tracks slow drifts in the laser frequency. At the same time, faster

fluctuations which are above the cutoff frequency of the feedback system are measured

in the Pound-Drever output signal and used to determine the quantum noise spectrum

of the laser output. This system is now in operation and working well. The shot noise

in the measurement system has been established using a stable-cavity diode-pumped

YAG laser with a much lower Schawlow-Townes noise level, and the enhanced noise in

our unstable laser then measured with respect to this.

With the present system we have at this point been able to obtain a tentative

confirmation of the expected excess ioise level in our unstable laser; and the excess

noise results we have obtained to date on this configuration appear to be in reasonable

agreement with theory. We are attempting now to fabricate several similar monolithic

unstable-resonator YAG lasers with conventional hard-edged mirrors which will rep-

resent a wider range of unstable-resonator parameters, in order to make careful and

definitive measurements of the excess noise factors in these rods and thereby confirm

in a definitive fashion the excess noise figures we have pr dicted. These results should

then provide a firm foundation for future design and evaluation of ultrastable or ul-

traquiet laser oscillator and laser system designs, as well as confirming the unusual

quantum aspects of the predicted excess spontaneous emission.
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VI. ULTRASHORT PULSES IN THE INFRARED

Finally, in previous work under this contract we have summarized the poten-

tial advantages and capabilities of synch-pumped and mode-locked optical parametric

oscillators (OPOs) pumped by mode-locked Nd:YAG lasers. Mode-locked OPOs pro-

vide a promising method for generating very short pulses in the infrared; and if these

OPOs can be pumped by diode-pumped Nd:YAG lasers, one has the potential for a

comparatively efficient all-solid-state system for IR pulse generation.

In our work during the current period we have constructed and operated two

such synch-pumped and mode-locked OPO systems, making use in the first case of a

LiNbO 3 crystal pumped at the doubled-YAG wavelength of 532 nm and oscillating at

signal and idler wavelengths of -880 nm and -- 1350 nm, and in the second case of a

KTP crystal pumped at the fundamental 1064 inm YAG wavelength with signal and

idler at -1.5 microns and -3.3 microns. Both of these systems can now be operated

reliably well above threshold with the YAG pump laser operating in a mode-locked

plus repetitively Q-switched mode (at a 1 kHz repetition rate): and both are clearly

mode-locking and generating short IR pulses. We are now proceeding with efforts to

measure the exact pulsewidths and other detailed behavior of these systems.

Our future objectives on this project will include making better and more detailed

measurements of the operation of these mode-locked OPOs in the repetitive Q-switched

mode, including determination of pulse width at the IR frequencies, especially for

the KTP oscillator in the middle IR. In addition, we will attempt to optimize the

performance and operation of these OPOs, including reducing the pump threshold

and increasing our Nd:YAG laser performance so that one or both of these OPOs-

with the KTP version again taking precedence-can be operated as a reliable CW

mode-locked system.

We are also considering an effort to take advantage of a combination of self phase

modulation together with the newly emerging concept of "Kerr lens mode locking",

to obtain significant pulse-shortening in our mode-locked Nd:YAG pump laser, both

for its utility in our mode-locked OPO experiments, and as a potentially simple and

inexpensive way of retrofitting a large number of existing YAG lasers to obtain sub-

stantially shorter mode-locked pulses.
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VII. HONORS AND AWARDS

During the current reporting period Professor Siegman presented the R.V. Pole

Memorial Lecture, "Laser Resonators: Retrospective and Prospective", at the 1990

CLEO/QELS Meeting in Anaheim, CA, May 21, 1990.

Professor Siegman also presented a George Eastman Invited Lecture on "Defining

and Measuring Laser Beam Quality." to the Optical Society of America, Washington

DC, April 18, 1990.

In November of this year Professor Siegman will receive the 1991 Schawlow Award

of the Laser Institute of America and will be the Honored Speaker at the LIA's Annual

ICALEO Meeting in San Jose.
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Ray-Pulse Matrices: A Rational Treatment for
Dispersive Optical Systems

A. G. KOSTENBAUDER

Abstract-We present a new formalism to describe beam propaga- its ray-pulse matrix, while the vector that represents the
tion in paraxial optical systems with dispersive elements, including both ray contains all the information about both its temporal
spatial and temporal variations in the propagating signal. This new
formalism makes use of 4 x 4 "ray-pulse" matrices which take ac- frequency and its position.
count of dispersive effects up to quadratic phases in both spatial co- II. THE RAY-PULSE MATRIX FORMALISM
ordinates (as in the usual paraxial ABCD matrix approach) and in the
temporal domain. We show how to use these matrices to write a space- We begin by constructing an optic axis which corre-
time Integral analogous to a generalized Huygens integral, and derive sponds to the path of a spatially transform-limited, pulsed,
propagation laws for Gaussian ray pulses which are space- and time- midband reference beam as it goes through the optical
varying analogs of the conventional results for Gaussian beams. This system. At each point along this reference beam, we erect
new formalism should be very useful in analyzing dispersive optical tran
systems such as prism beam expanders, femtosecond pulse compres- reerec orneine e pee o of
sion systems, and dispersive mode-locked laser cavities. reference ray. For convenience, we place the origin of

these coordinates at the reference beam, as shown in Fig.

1. INTRODUCTION 1. This beam is also to be thought of as being a temporally
transform-limited pulse. so that it can simultaneously have

NAARTiNEZ [1], [2] has recently discussed the use of a well-defined center frequency (the reference frequency
3 x 3 matrices to model polychromatic beam prop- or central frequency for the system) and can mark a well-

agation through paraxial optical systems with dispersive defined time of arrival at each transverse plane. For con-
elements. His treatment starts by defining an optical axis venience, we set the clocks in each transverse plane to
as the path a midband reference ray takes through the sys- zero at the time of arrival of the reference pulse.
tem. He then constructs 3 x 3 matrices of the same form We can now imagine firing another transform-limited
given in Siegman 131 which model the path of slightly pulse at a different starting time and with a different car-
displaced and slightly detuned rays. In particular, the E rier frequency into the system at a slightly different po-
and F elements of the matrix are frequency dependent, sition and slope. We will denote the changes in these four
allowing different wavelengths to traverse different paths quantities as tin, fi, xin, and Oi,, respectively. In order to
through the system. simplify later results, we assume that each reference plane

Several aspects of this treatment can be improved by is surrounded by a slab of infinitesimal thickness of ma-
expanding the formalism. First, the Martinez formulation terial of unit index of refraction. Equivalently, the 0's
has ray matrix elements which depend upon the frequency should be viewed as the slope normalized by the index of
of the incident wave, whereas one would like the vector refraction. This normalization avoids the need to have
that describes the ray to carry all of the information about matrices that describe flat dielectric interfaces. Also, we
the light and the matrix that represents the optical system use hertzian frequency f rather than radian frequency W as
to have no dependence on the ray. Second, the properties this reduces the number of 7r's that need to be carried
of the optical system are not fully described by the 3 x 3 along.
matrix, since several additional phases must be carried As this new pulse crosses each of the transverse planes,
along to get a complete description of the optical system. it defines a new arrival time, frequency, position, and

In this paper, we show how a formalism making use of slope relative to the reference pulse. (The time at each
4 x 4 matrices can be used to model time- and space- plane is really a time offset from the reference time at that
varying wave propagation in dispersive paraxial systems plane.) We know that the coordinates at the output plane
in a canonical way that overcomes these difficulties. In must be a function of the input parameters, i.e., that
particular, the optical system is completely modeled by

Manuscript received July 5, 1989 revised January 3. 1990. This work 0
was supported in part by the Air Force Office of Scientific Research and
by the Newport Corporation. [ t

A. G. Kostenbauder is with the Edward L. Ginzton Laboratory, Stan-
ford University. Stanford, CA 94305.

IEEE Log Number 9035232. © 19f EE

0018-9197/9010600-1148501.00 ©1990 IEEE
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R.P I R...2 in place, we have

RP 3 lae

axout
A B 0-~

S I = I
0 I I ,.-0 L ax 0
R..5 L ut ao 1 a~" ai fJi

Fig. I. Optical system with reference planes (R.P.I-R.P.7) and clocks 0 0 0 1
constructed to measure path and time of flight of arbitrary pulse. Note _
that all clocks in R.P. I-R.P.5 show positive times, but those in R.P.6 (3)
and R.P.7 are negative and will reach zero when reference pulse arrives.
Each R.P. is perpendicular to direction of propagation of reference pulse.
and has its origin where reference pulse goes through R.P. For convenience, we name the remaining derivatives E

thru I, so that a generalized 4 x 4 ray matrix or ray-pulse
matrix has the form

Also, by the definition of the reference ray, we know that
5 0) =0. For systems of interest the function is [ 1 A B 0 E x
highly differentiable, so that it makes sense to replace (1)
by the first nonzero term in its power series. This yields 0 C D 0 F 0

ax., axoU axot, axo,, [Lout LO H 1 (4)r aoUl ou aou aot1  Each of the symbolic entries in this matrix can, in fact,
oj= ax,, Wit. atin 1 take on any value, although the nine entries are not all
r/ou t ato t atout alout  independent. One of the relations among them is the fa-

miliar AD - BC = 1, while two other relations involve
L out a a f in the dispersive elements and have no analog in ABCD ma-

afout af~u, af(ut afu,u trices. The relations will be discussed in-depth in the sec-
xi. aOi atto afin tion on the analog of the Huygens integral, where the form

of the extra relations is easy to discover; however, it is

(2) easy to see why AD - BC = 1 without the use of the
integral formalism. If we imagine placing blackbodies at

Most of these matrix elements can be put in simpler terms. the same temperature on both ends of the optical system,

Consider first the upper left 2 x 2 block in the matrix. each emits a certain amount of energy per unit time per

These elements determine the changes in output position unit frequency per unit area into a unit angle. Because the

and slope caused by input changes in position and slope, matrix in (4) gives the output time, frequency, position,

with input frequency and time unchanged, and are thus and slope as functions of the input, its determinant is the
magnification of the phase space volume that the radiationjust the conventional ABCD matrix elements for the sys- is in. But by the second law of thermodynamics, there can

tem. (This is not entirely obvious, as the conventional be no net power transferred, and thus no change in radia-
ABCD matrix is defined in terms of the propagation of a tion density, so that the determinant must be I. Expand-
monochromatic wave, while the elements of the general- ing out the determinant then yields AD - BC = I
ized ray matrix are defined in terms of the propagation of
a group. A rigorous proof of this equivalence will be given
below at the end of the section on the generalized Huy- I11. RAY-PULSE MATRICES FOR SOME COMMON
gens integral.) ELEMENTS

Similarly, looking at the bottom row and knowing that
in all cases f, = fi, for a time invariant linear system, As an example of this formalism, let us compute the
we find that this row must be 0, 0, 0, 1. Finally, the third ray-pulse matrix for a grating. The reference planes are
column, which determines how the output pulse depends taken perpendicular to the incident and outgoing parts of
on the input time must be 0, 0, 1, 0 due to the time in- the reference ray, and are chosen for convenience to meet
variance of the system. Putting all of these simplifications at the point of reflection, as shown in Fig. 2(a). Construc-
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Output Input
reference reference
plane plane

out

grating

(a) (c)

R'

(b) (d)

Fig. 2. Ray-pulse matrix for grating is computed from difference in be-
havior of reference ray (a), spatially offset ray (b), tilted ray (c), and
detuned ray (d).

tion of the ray-pulse matrix begins by considering an in- TABLE I

cident wave parallel to the reference ray, but separated GENERALIZED RAY MATRICES FOR VARIOUS OPTICAL COMPONENTS

from it by x units as shown in Fig. 2(b). This new ray lEFNS OR MIRROR _ o PE VFI.'.A

strikes the grating x/sin 4' units away from the reference, 1 0 o
and the reflected ray can be extended backwards to the 0 1 ()
output plane where its height is -x sin 0/sin k. Thus, A LTf" " P.I.M - - --
= -sin 0 /sin 4. From the grating law, it is clear that the LITTRW PRISM Pills_

output is parallel to the reference from which we conclude , . I

that C 0. Also, the extra distance traveled by the offset , .
ray is just PQ - QR so that the pulse will arrive x (cos ..
- cos 0k)/(c sin 4') later, so that G = (cos 4' - cos 0)/ p 

. - up

(c sin C'.(RATING E EN HA.PRISM _N1 _

We now consider a ray that meets the input plane at the A
B - ',.

same place as the reference ray. but that has a different
slope as shown in Fig. 2(c). It is clear that the output .. " .
position has not moved, and thus that B = 0. From dif-
ferentiating the grating equation. (f0 + f) (cos 0 - cos H .,,....
li) = C/Xgrating where fo is the frequency of the reference / ... ,r.....

ray, we can deduce that -sin 4'0 + sin 60 = 0 so that ....... . .
D = -sin 4/sin 0 because the input angle is -60. We
could also have obtained this element from the previously
obtained values for A and B plus the relationship AD - .
BC = I. Also, the delay of the tilted ray is seen to be
zero so that H = 0.

Finally, consider a pulse that lies on top of the refer- that the output time and position are identical with the
ence pulse, but has a different center frequency, as in Fig. reference, and thus that E = I = 0. To obtain the last
2(d). Just as in the case of the tilted input wave, it is clear element, differentiate the grating equation with respect to
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Mirror

rto obtainf (cos i/ - cos 4) -fo sin 060 = 0 from which Symmetry

6ve conclude that F = (cos 0 - cos 0)/(f0 sin 0) where Plane

F is the frequency of the reference ray. - ,

Using the method of the preceding paragraphs, explicit
values of the ray-pulse matrices for other common dis- /> Ki/
persive systems have also been calculated, as summarized <.
in Table I. It is interesting to note that the matrices for a
grating and for a prism used at its tip are formally iden-
tical and, in fact, the only difference (to the order of ex- (a)
pansion treated here) is that the grating has much larger
dispersive terms. Because of this, we will explicitly treat
optical systems that are made with prisms, but the reader
should remember that any of these prisms can be replaced
with gratings. We consider now several uses of these 4
by 4 ray-pulse matrices.

IV. MULTIPLE-PRISM SYSTEMS

These ray-pulse matrices can be used to simplify the (b)
analysis of a variety of useful dispersive propagation sys-
tems. As a first example of a more complicated but useful
system, let us consider a prism assembly similar to that
used in femtosecond laser cavities, as discussed by Fork
[4]. We assume that the reference beam passes through Dl

the apexes of all four prisms; that the input face of the
first prism is parallel to the output face of the second M2. D2 M3, D3
prism; that all of the prism apex angles are the same; and M6, D6 7
that the second pair of prisms is a mirror image of the first
pair, as indicated in Fig. 3(a). These specific conditions (c)
ensure that the rays at the input, output, and between the Fig. 3. Various systems that can be modeled with generalized ray matri-
second and third prisms are parallel independent of the ces. (a) Multiple-prism system used to obtain positive group velocity
index of refraction and dispersion of the glass in the dispersion in femtosecond laser cavities. (b) Variation on frequently usedfor short pulse amplification. (c) General prism beam expander whose
prisms. Under these conditions, the first prism has a gen- ith prism has magnification M,.
eralized ray matrix given by

ond and third is L, the overall system matrix is found to
M 0 00 b

/ IM 0 D (5 A+2I- 0 0
MD/X 0 0 1 0000

0 0 01] (0 [K0 00 -2D 2L/Xoj (7)

while that of the second prism is L 0 0 1

O M This result says that rays of different wavelength that comeI /M oo 0 0into the system at the same position and slope will go out
0 M 0 -MD of the system at the same position and slope, but at dif-LoDho 1 "(6) ferent times. Indeed, this matrix is identical to that for a

-D/X 0  0 1 0 slab of material with a positive group velocity dispersion,

0 0 1 independent of the sign of D, so that the cascaded prism
assembly provides a method of achieving positive group

Explicit values of M and D in terms of the physical pa- velocity dispersion with no angular dispersion.
rameters of the prisms are of little importance here, but This approach has also been applied to the specific case
can be found in Table I. The matrices of the third and discussed by Fork, in which the reference ray does not
fourth prisms are respectively identical to (5) and (6) but pass through the apexes of the second and third prisms,
with D replaced by -D. Assuming that the space between and the prisms have been cut so that they can be simul-
the first and second prisms is L, and that between the sec- taneously used at Brewster's angle and M = I. The result
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obtained in this way for dt/df are in exact agreement with where M, is the magnification due to the jth prism, and D,
that found by Fork by a geometric construction. is the rate of change of output angle with input frequency

As a simple variation, the second pair of prisms can be in the jth prism. The overall angular dispersion is thus
arranged as in Fig. 3(b). and a telescope of magnification E'/ I D 1 /fI , /fl+ 1 M,,, in agreement with the result implied
-1 can be used to fill the space between the third and in Duarte and Piper 15] and given explicitly in Trebino
fourth prisms. This yields an overall system matrix of 161. This result implies that under common conditions the

optimal design for an achromatic prism beam expander
1 0 0 oo should have all but the last prism pointing in the same

0 - 1 0 0 direction, as was pointed out by Trebino.

0 0 1 (8) V. GENERALIZED HUYGENS INTEGRAL

0 0 0 1 It is well known that optical systems characterized by
an ordinary ABCD matrix are equivalently represented by

which results in the beam being turned upside down and the monochromatic Huygens integral operator 131
propagated backwards by a distance L. Assemblies simi-
lar to this are in common use in ultrashort pulse amplifi- di
cation schemes. These systems are gratings instead of j dXnU(x,)
prisms, and are designed to temporally disperse the pulse
before it passes through the gain medium (located be- jr
'ween the second and third grating) and then reassemble exp - (Ax( - 2.x,-ui + D-C20W) (10)
the frequency components in the last two gratings. LXOB

As a final example, consider the design of an achro- where we have omitted a constant phase factor. This can
matic prism beam expander as shown in Fig. 3(c). where be thought of as saying that the optical path length
one wants to have the direction of the output beam not (eikonal) through an arbitrary ABCD system from x,, to
vary with the frequency of the input (i.e.. F = 0). Since is (I/ ) ( - 2 +is / 12B) Ax2 ,.r,, + )x plus a constant
we are only interested in this one matrix element, it is which we will ignore.

clear that we can omit the matrices that correspond to the In this section, we will derive an analog to this result

free space between the prisms, and that we may also as- for the 4 x 4 ray-pise matrices. We begin by specifying

sume that the beams go through the tips of the prisms. A both the position and time that a pulse is to arrive at the

straightforward induction shows that the overall matrix

for k prisms is just

Al 0 0 0

0 I/M4 0 D,
M4.Dk / M 0 1 0

0 0 0 1
M, 0 0 0

0 1/M0 0 D0

MDDI /I 0 1 0

0 0 0 I

M, 0 0 0

1), 0 0, 1 0

0 0 0
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input and output planes. (This ability to use two-point A simple way to establish the correspondence between
boundary conditions is a result of the even number of co- the elements of the generalized ray matrix and the un-
ordinates, since a system with an odd number of coordi- known parameters ae, 0, - - •. - is to take an incident
nates will either be underdetermined or overdetermined wave which has its center at position i, time t. mean slope
when an even number of conditions are applied.) The 0, and mean frequency f and perform the integration in-
specification of these four coordinates allows unique re- dicated in (11). Using the input wave
construction of the other four coordinates, except in
pathological cases such as imaging between the input and
output planes. ( i (x 2 ti (t- )2 ,

The integral kernel is now expected to be of the form exp 27r - - I

exp [ -j2rL(.r,, , . tin, t,ut)/X 0 i where the function L X0 0
is real. Expanding L in a power series in all four coordi-
nates yields first a constant length Lo that is analogous to
the overall phase factor in the Huygens integral formula-
tion, which we will ignore just as we have done in (10). -- (X ) + jf (tin - -t (12)
Next, there are linear terms that are zero because of the
way we have constructed the reference planes. Again, this
is analogous to the Huygens formulation where there are yields an output wave which is a constant involving 77
no linear terms in the exponential when treating systems times the exponential of a second-degree polynomial in
in which all elements are on axis but, when elements are
off axis, one must use ABCDEF matrices, and the kernel xo, and tu with coefficients that depend upon a,
does indeed contain linear terms as given below in (20). and the coordinates of the input wave. In order

The next term is a quadratic form in x, x tin, and tout to find the position, slope, frequency, and time of the out-

that can be reduced to a quadratic form in xi, x,u, and tn put pulse, we must separate the wave into the product of

- tout by the time invariance of the system. As in the an envelope and a phase. This is easily done as the poly-
nomial in the exponential is easily split into real and

Huygens formulation, we stop with the quadratic terms, miar in the exponential eai plit ieldand
although there are in fact higher order terms that are of imaginary pars, the exponential of the real part yielding
importance when rays are far off axis or are wildly de- the pe The ponenti of the mgiar part
tuned from the reference ray. Thus, we have the follow- being the phase. The position and time of the output pulse
ing ansatz for the space and time-varying analog of the can then be located by setting the derivatives with respect
Huygens integral: to xut and t, of the envelope to zero and solving for x,U,and tot

Tr , Alternately, we could evaluate If dx,, dto,
Ur /X xou I Uou 1 2 / I dx,,u, dtout I Uou,12 as the mean position of

dr, dti, U( x,.n ti) exp - xou the output pulse, and use f dxout dt1 ' toutI U.. 1 2 / If d2 /jL t, - tKout dt0  I U,,0 1 2 as the mean time for the output pulse. How-
ever, a basic theorem for Gaussian distributions tells us

cit Vinthat these are identical to the position and time of the
maximum amplitude of the pulse. Similarly, the fre-

, 1) quency and slope of the output ray may be found by te-
'tin - tout) dious integration, or by evaluating the derivative of the

imaginary part of the polynomial at the position and time
where X( is the wavelength of the reference ray. found just above. The result of this can be summarized as

the generalized ray matrix

E- O" -_ -

oi-" + 0l2 + 20- 6 "- 2 ( 2 0 - X

(13)

- , 0-

0 0 0 i
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Intermediate steps in the derivation of this result have been may be taken to be
suppressed as they are exceedingly complicated, and re-
quired the use of MACSYMA. This result can be inverted
to give oi, , • as functions of A, B, • , . The BF - ED = XoH
results are AF - EC = XoG (15)

XoA(EH - BI) + E 2  or they may be taken to be
Ci =

)i)B(EH - BI) AD - BC = I

I Xo(BG - AH) = E

EH - B! X0(DG- CH) = F (16)

E depending upon whether one wants to think of H and G
EH - BI or E and F as being more fundamental. These constraints

D(EH - BI) + X0 H 2  may also be written in the matrix form

B(EH -BI) A 8B0 E1-T -0 10 0

XoH DOF -1 00 0

EH- BG H 1 0 0 0 -

X=EH-Bi (14) 0 0 0 0 Xo
EH - RI

A B 0E 0 10 01
Finally, 17 can be determined up to a phase by insisting D0F F-
that energy is conserved. Doing so yields q = x C D

j/Xv)(EH - BI) where the phase of - has been chosen G H I 1 0 0 0 -X 0
to make the output phase identical to the input in the limit L 0 0 1 0 0  XO 0
of an identity ray-pulse matrix. With these identifications,
(11) becomes a generalized time and space-varying Huy- (17)
gens kernel, analogous to the space-varying integral of
(10), and dependent only on the A through I matrix ele- Quick inspection reveals that all of the matrices in Table
ments. I obey these relations. Also, it is easy to show that if a

In the expressions for i, 3, • , we find that the series of ray-pulse matrices satisfy (15), (16), or (17),
expression EH - B! occurs repeatedly in the denomina- then so does their product, from which we conclude that
tor. Several of the systems that we have already discussed (15), (16), and (17) are in fact satisfied for any system
make this quantity zero, so we will describe how to han- made up of the components in Table I.
die this case. There are two distinct possibilities: if at least It was mentioned earlier that the A, B, C, and D ele-
one of E, H, B, or I is nonzero, the kernel collapses into ments of a generalized ray-pulse matrix are identical to
a one-dimensional delta function, which cancels one in- the elements of a conventional ray matrix, despite the fact
tegral in (11) and the other integration remains nontrivial, that the ray-pulse matrix is defined in terms of a temporal
If, on the other hand, all of E, H, B, and I are zero, we group while the conventional ray matrix is defined in terms
obtain two delta functions that renders both integrations of a monochromatic wave. There are two distinct argu-
trivial. Both of these cases are handled by making small ments that can be made to establish this fact. First, an
perturbations in the matrix elements, and then letting these intuitive argument: note that a temporal group can be bro-
changes go to zero. For the case EH - BI = 0, but B * ken down into monochromatic waves, and that each of
0, we obtain the kernel Vj/oB exp 1( -jr/XoB) (Ax , these can be propagated through the system by the use of
- 2Xix,ou, + Dx2,t)I 6(tin - t,,u, + Hxout/B + Exi,/XoB). a conventional ABCDEFmatrix. The matrix used for each
Formulas of a similar type exist for E * 0, H * 0, and frequency component will be slightly different if the sys-
I * 0. For the case where B = E = H =I = 0 the tern contains any dispersive elements, which means that
propagator is just A - '/2 exp ,-j/Cx ,/XoAI 6(x,, - the various monochromatic waves will emerge at loca-
X0ut/A) b(tin - t.., + Gxin ). tions and slopes centered around that of the monochro-

Since the propagator has only six parameters that influ- matic wave with the central frequency. Finally, noting
ence the output coordinates and the generalized ray matrix that the energy per unit area per unit angle of the mono-
has nine variable elements, we know that there are three chromatic waves is additive, we find that the temporal
relations between these matrix elements. These relations group emerges at the location and slope of its central fre-
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uency component that implies the equivalence of the A, corresponds to an ABCDEF matrix at wavelength X so that
1, C, and D elements of the two types of matrix, the integral in (19) corresponds to the matrix

A second and more rigorous argument is based upon the
Iuygens integral formulation. We begin by taking an ar- A B fE
itrary generalized ray matrix and computing its gener- C D
lized Huygens integral equivalent as given in (11) and D F (21)
14). We then apply (Il) to a wavefront U(xi,) with no o0 0 1
ime dependence, and perform the indicated time integral.
"he result is plus terms that are quadratic and higher in the input

variables. These bigher order terms are not to be trusted
j1 dxi. U(xi.) as the entire theory can only predict accurately changes

CX0B Jin position that are linear in the input variables. This re-
sult generalizes the argument made in the last section

[j (A . +D 1 8) about the correspondence between the A through D ele-
S( n -o t (18) ments of the conventional and generalized ray matrices,

Sx -in that it also shows that the E and F elements of the ray-

vhich is identical to (10) except that the A, B, and D ap- pulse matrix are closely related to the E and F elements
learing now are elements of the generalized ray matrix. of conventional monochromatic but misaligned ABCDEF
rhus, the generalized A, B, and D elements of the ray- matrices.
ulse matrix are identical to those of the monochromatic At this point, the problem with using only 3 x 3
ay matrix. Finally, the C elements of the two types ABCDEF matrices to model dispersive systems also be-
,f matrices are identical because both satisfy AD - comes clear: the elements G, H, and I are missing from
3C = 1. the 3 X 3 formulation. The loss of G and H causes no

loss of information, as they are computable from the re-
VI. MONOCHROMATIC WAVE PROPAGATION maining elements via (15), but i, which contains infor-

Now that we have the analog of Huygens integral for mation about the dispersion on axis is missing and is not
•ay-pulse matrices, we may obtain results for various spe- recoverable. It is important to note that the reduction of a
:ial input wavefronts. We begin with a discussion of the ray-pulse matrix to an ABCDEF matrix for each frequency
:ase where the input wave is monochromatic at some fre- ignores the phase factor in front of the integral in (19),
juency f. In this case, we will write the incident wave as and thus results in the inability of the reduced formalism
rJ(X,,) e j 2 rft and perform the time integral. Doing so re- to predict the relative phase of various frequency com-
;ults in the output wave being given by ponents.

A physical description of this loss of information may
exp rf+ j (EH Bi) dxinU(xn) be obtained from the standard construction of the eikonal.

S2B For a single frequency, one can develop the phase of
propagation through the system by considering rays that

j~r originate at a point some distance back from the optical
exp -- L(XinXout ) j  (19a) system, and come to a focus downstream from the sys-

tem. Since each of these rays must have the same total
Nvhere the eikonal length L(x,, x(0 u,) is given by optical length, and the paths outside of the system are

S Ar -ID)(x i  known, we can subtract to get the path in the system.
L(xin,xout) = Xin A - xn Thus, the system path length involves the total length

- DJ-1 .x,,. which may vary from one frequency to the next. If we

E ( were to treat the system with ABCDEF matrices, we would

+ 21, (19b) have to carry this extra path or phase as the auxiliary func-
\XH \x011 tion Martinez calls 0.. If we make a Taylor-series expan-

sion of 0(), the constant term is unimportant; the linear
If the incident field is known in the form U(x, f), the term is zero because of the way we have set up the clocks;
9utput field may be found in the same form by using (19) and the quadratic term is given in (19). Thus. 40 is in-
for each frequency component. The kernel cluded in our theory, provided that we neglect cubic and

xjlr (xin A -I higher terms.

D ) ~VII. GENERALIZED GAUSSIAN BEAM PROPAGATION

2w 1E T(. in (20) Another special input wave that results in interesting
XB (BF - DE) X output waves is a generalized Gaussian pulse. This can be
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written as a wave of the form without bound as it is repeatedly passed through a (time
i ( 2\1 invariant) dispersive system, although it may narrow for

exp (22) the first few passes. This means that. except in the case
O tin/ t of no dispersion, there cannot be any temporal eigen-

pulse, while in the case of zero dispersion, any temporal
which is a generalized form of the usual Gaussian beam pulse shape will come through unaltered. Returning to the
with beam parameter . The minus sign in the definition combined space and time treatment, it is reasonable to
(22) is needed to make the O- matrix have one covariant look for pulse "hapes in which O- and Q0  do not change

and one contravariant index, as is required by the formula upon propaga... 'hrough the system, while ,, increases

below. The generalized Gaussian beam parameter 0 can by A in each pass. Expanding out (23) under these as-

be defined without the minus sign, but this results in sev- bympin elds

eral appearances of the metric tensor below. Also, since sumptions yields

- defines a quadratic form, we require that the xt and Q.= AQ +B

tx elements of 0 -' are negatives of each other. CQ,, + D

Several other points also need to be made about (22). - - /
First, the xx element of Q does not give the beam width oi, =
unless the xt element is zero. Similarly. the tt element CQ,, + D
does not determine the pulse width unless the cross term -i, + F/o,
is zero. Finally, note that the intensity and phase fronts A + +,, - (Ge, - , H)
of (22) may be obtained by taking the imaginary and real CQ2 + D

parts of 10 -. respectively. It is then not only possible for - - I/k + (24)
the two real quadratic forms that result to not have prin-
cipal axes along x and t. but it is also possible for them Letting R = (A + D) 2 

- 4, we obtain
to have different principle axes that result in pulses that A D + R
have phase fronts and intensity fronts pointed in different
directions. 2C

If the pulse (22) is propagated through the system by AG - F/k) + CH ± R
the Huygens integral (II) above, we find that C(2 +

C(2 + .4 - D ± R)
A1(AO\\A(BE / ,/| AG i/o - ( + H D ± R"

O(C 0) a,, + (D F/X)j' (23) JAG - F/Xo + CH ± R + (F/X + G)

o 0 0 1 . (2 + A - D + R)] (25)

which is analogous to the result q(,, = (Aqn -t B)/(Cqi, as the parameters of the quasi-eigenpulse. Although thc
+ D) that holds for Gaussian beam:. Of course, the an- result in (25) for !,, appears to be familiar from cavity
alog is not quite exact, as the expressions previous are mode theory, the beam waist is not . / unless 01,
matrices and the order of the numerator and denominator is zero. When the optical system is designed to make
matters, while in the conventional formula no such dis- propagation separable into space and time components.
tinction needs to be made. The 2 x 2 blocks in the expres- (25) reduces to
sion above can be written down by inspection by the fol-
lowing means: divide the variable elements in the last A - D ± R
column by X0, and then reorder the rows and columns of 2C
the ray-pulse matrix so that the variables occur in the or-
der x, t, 6, and f. The upper right 2 x 2 block is the = 0

coefficient of 0,n in the numerator, the upper left 2 x 2 A = -/X( (26)
block is the constant in the numerator, and similarly the
lower half of the rearranged matrix yields the denomina- of which the first is truly familiar from standard cavity
tor of the expression for 0,, mode analysis while the last is from dispersive system

We can now try to determine an eigen-i for the system. theory.
A quick computation shows that there is no input () that The ray-pulse matrix theory as described here does not
can yield the same Q at the output except in degenerate include active modelockers and other time-varying ele-
cases, and then any value will do for !,,. The reason for ments. It is clear that the theory can be expanded to cover
this is that the time part of the problem behaves in a di- time varying elements by allowing additional elements of
vergent fashion; the temporal width of any pulse expands the matrix to vary. Including time-varying modulation
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elements should make it poss;'-ie to determine the true phases in both spatial and temporal frequencies. The abil-
combined temporal and spatial pulse shape of an actively ity of 4 x 4 matrices to convert to this integral operator
mode-locked laser; but we are already in a position to see form relies upon the fact that the variables come in con-
that the correct configuration for a passively modelocked jugate pairs. Several extensions of this work are possible.
system will have A near 0 as this means thiat the pulse One extension would be to include elements such as
does not spread much during its propagation around the Gaussian apertures whose ray-pulse matrices would have
cavity, and thus makes easy work for the nonlinear mech- complex entries. Another would be the introduction of
anisms that lead to pulse shortening. time-varying clemeats such as modelockers. By including

these active elements it should be possible to find true
VIII. ALTERNATE RAY-PULsE FORMULATION eigenwaves for an arbitrary mode-locked system, with re-

For compatibility with earlier forms of ray matrices, we suits similar to the Kuizenga-Siegman 17] theory of
defined the ray-pulse matrices in the form given in (4). modelocking. The theory could also be extended to han-
,An alternative approach would be to rearrange the vari- dIe off-axis components, and finally, cubic and higher or-
ables with both coordinates first, both frequencies second der theories might be developed in analogy with the higher
in the form order theories of monochromatic systems, For the disper-

sive problem, there is an interesting quadratic theory as
[ A 0 B E/ 1  X there is no symmetry which rules out second-order termsi 1 i HItas there is in the familiar case. Also, both transverse di-

1G IH Ik _____ mensions could be included by increasing the size of the
L C 0 D F I L matrix to 6 x 6, as it is only necessary to add the second

L 0 0) nslope and position as coordinates.
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We have shown that time-invariant dispersive optical
systems can be modeled in a ver, straightforward way by
using 4 x 4 ray-pulse matrices, and that this formulation
allows the construction of a Huygens type integral oper- A. G. Kosienbauder, photograph and biography not available at the time
ator that describes the dispersive system up to quadratic of publication.



What is PARAXIA? Why use PARAXIA?
PARAXIA is a famnil,, Macintosh applications de- Because PARAXIA is general, fast, accurate, and easy
veloped at Stanforo u~r~iversity for the computa- to use.
tion and analysis of laser resonator modes and laser
beam propagation problems. Taking advantage of * Wide range of applications
the fast processors and excellent graphics capabil- PARAXIA can handle arbitrary paraxial optical
ities of modem personal computers, together with systems with only a few restrictions, and can be
optimized algorithms including Fast Fourier and Fast used to solve a wide variety of problems, from
Hankel transforms and the virtual source formalism, resonator mode calculations to far-field beam
PARAXIA offers a set of powerful analysis and design patters to misalignment sensitivity analysis.
tools that provide rapid and accurate results and ar * Performance
extremely easy to use. PARcAXIA uses optimized algorithms for fast and

PARAXIA can handle in general any separable accurate results. (FRESNEL propagates a wave-
paraxial optical system in cartesian or cylindrical co- front of 1024 points through the system in 3
ordinates, including complex-valued and misaligned seconds/iteration. VSOURCE computes 10 sets
ray matrices, with full diffraction effects between of lowest and higher-order unstable-resonator
apertures. It includes the programs: eigenvalues/second.)

* ABC:D provides complex-valued ray-matrix and
Hermite-gaussian mode analyses for arbitrary * User-friendly interface
paraxial resonators and optical systems, includ- All PARAXIA programs are highly interactive

in sigaimand misalignment in each ele- using an efficient user-friendly interface con-
mingatigatsmsistent with Macintosh User Interface guide-

tlines. Menus, dialog boxes and help files makeW FRESNEL uses FF1T and FHT methods to propa- PAPAXlA easy to use even for researchers not
gatel a arbitrary wavefront through any arbitrary familiar with the Macintosh computer.
paraxial optical system using Huygens' integral
in rectangular or radial coordinates. The wave- Compatibility

front can be multiplied by an arbitrary mask Each PARAXIA program can produce its ownor mirror profile before or after each succes- graphic output and exchange data files with other
sive propagation through the system; a scripting PA AXiA programs; but all the programs can also
capability makes iterative Fox and Li resonator export data files to a variety of other Macintosh
calculations easy to implement. applications, including major graphics packages,

• VSOURCE implements the virtual source anal- for further analysis or enhanced display.

ysis to calculate d ccurate eigenvalues, eigen -Perfo

modes, excess noise factors and cross-power co-
efficients for unstable resonators with both cir- HOW to get PARAXIA?
cular mirrors and rectangular hard-edged mirrors
(including misaligned rectangular systems) over PARAXIA is available from Stanford University at:
a full range of equivalent Fresnel numbers. Software Distribution Center

" VRM carries out mode calculations and design 857 Serra Street
analyses for gaussian variable-reflectivity-mirror Stanford, CA 94305-6225

lasers. (415) 723-0651



_______BCD
Stanford Resonator and Optics Programs A C

Ray-matrix algebra made easy

ABCD is a highly interactive program that
allows you to "build" an optical system as a Examples of problems ABCD can easily
succession of optical elements (lenses, mirrors, solve include:

Brewster plates, etc.), and edit it in the same e the design/analysis of stable resonators (ei-
way you edit text on the Macintosh, using the genmode calculation, astigmatism correc-
Cut, Copy, Paste, Clear and Undo commands. tions, regions of stability, etc.)
The various parameters (focal length, thickness,
etc.) specified independently for each element * the design/analysis of coupling optics (e.g.,
can be edited at any time, can be made variable, coupling a laser beam into an optical fiber.)
and each element can be made misaligned and/or e the calculation of an overall ABCD matrix
astigmatic. ABCD will propagate an arbitrary to be used in FRESNEL.
gaussian beam (e.g., the eigenmode) through the
system, and calculate the variation of the gaus- In addition to being a powerful investigation
sian beam parameters (radius of curvature and tool, ABCD also proves very useful as a didactic
width) at a given location when varying the pa- software for teaching paraxial optics.
rameters of the optical elements.

Each element Elements can be astigmatic
can be edited at any time. (like this 1D GRIN slab).

Edit your system 6 File Edit Define Zraphs i

like you would text:
use Cut, CopyI Coupling 2J!
Paste, Clear, Undo 11/2 ElBela Idate

Use the tool palette . ] 0 4 1 [
to build your optical 0 1 23 4 5

system. iOvralEinad ut Ra Interface YWis 02 Seecio

The overall CD .0.1557 w5e-3 w9.-, 2.-3 ,-3.137,-3 CD ) -1 1-
ABCD matrix Ati'/BM- 4 .5556  3 5556) Unstabi. R R - 6 4C D . 93.AD 1 0ABCD matrix I w-Se-3 w9.82e-3 -. 3e )

can be exported Coupling: Beam Coupling: 5

... ..... ......................... "

0L

............. .... ............. ...... . .... ...... ......... ............... ..-. 0 .. . ............ . .... -A

II .. ............

A second window shows the propagation Additional windows show the variation
of an arbitrary gaussian beam through the system of the beam parameters (at any
(both transverse directions are shown). location) when varying the parameters

of the optical elements.



Stanford Resonator and Optics Programs F R E S N E L
General-purpose wavefront propagation

FRESNEL will propagate an arbitrary wave- Examples of problems FRESNEL can easily
front successively through a hard-edged aper- solve include:
ture, an arbitrary mask, and an arbitray paraxial * the propagation of a non-gaussian wavefront
system described by a complex-valued ABCD- through an arbitrary paraxial system.
EF matrix. An iterative option allows for Fox * finding the eigenmodes of any type of res-
& Li calculations of resonator eigenmodes. onator (stable or unstable).

FRESNEL uses Fast Fourier and Fast Hankel
transform algorithms for fast, accurate results, The hard-edged aperture and arbitrary mask

even with large numbers of sampling points, in front of the system allow for modeling of such

FRESNEL has import and export capabilities, to elements as:

exchange wavefront data file with other pro- 9 hard-edged mirrors
grams, and can be run either in interactive or e hole coupling
batch mode using a script file to describe longer * supergaussian variable-reflectivity-mirrors
jobs. 9 gain sheets

The input wavefront can either be
a build-in analytic function or Explicit dialog boxes The output coordinate
an imported user-defined data file. allow for a highly can be scaled within

6 F ile Edit Define Run Windows interactive interface, the calculation process.

Input intensity - I
l-Propagate

71+ @ Input ® Single-pass
. i ii 0 0  IoUtl)U| "t --6 tive

l ! 128
-/ -Output- 25

-7125

o Scale outpi 512 2.51 Magnification M
-1 0 +1 (> 600 suggested)

Output intensity -] Normali 8192 maximum 0 area
16384

+71 Help 32768 jjji
0 65536[I_______71I
" On-line help The fast FFT and FHT algorithms

0.. . ... makes the allow for calculations with large
-1 0 4-1 programs numbers of sampling points

even easier to use in a fairly short time.
The output wavefront can be exported 1024 points: 3 seconds/iteration

directly to graphics programs, 16384 points: 50 seconds/iteration

such as Igorm.



_soURCE
Stanford Resonator and Optics Programs

All about unstable resonators

VSOURCE implements the virtual source
formalism for the study of hard-edged strip or The beam profile at other locations inside
circular unstable resonators. VSOURCE will the resonator, as well as the far-field pattern
compute in real time multiple eigenvalues as a outside the resonator, can be calculated by ex-
function of the effective Fresnel number and/or porting the data to FRESNEL. In cartesian coor-
the magnification of the resonator, as well as the dinates, VSOURCE can handle asymmetric (or
corresponding eigenwaves and associated over- misaligned) resonators, allowing the study of
lap integrals (excess noise factor, cross-power, one-sided unstable resonators.
etc.).

6 File Edit Compute Goodies Windows

i Eigenualue modulus 2Jq Eigenualue cor

- Eigenvalues are displayed
both in modulus and
in the complex plane.

EVO 0 :0o.7U exp~j.0.3) -

Eigenwaue intensit l Excess Noise
- Eigenwaves can be

exported to FRESNEL
or to graphics programs.

0 ................. ................... , .. ..; ......
1 0 1

Stanford Resonator and Optics Programs V R M
Gaussian variable-reflectivity-mirror resonators

... ... . .. ... -.x- : ::.--....::-:... ... .::. •... . •... ...

VRM is a numerical implementation of complicated analyt- 101 tigenualue modulus 0011
ical results obtained for the gaussian variable-reflectivity-mirror
resonators (both stable and unstable). VRM will compute the vari- 1I
ation of the eigenvalues as a function of the equivalent (gaussian
aperture) Fresnel number and/or the magnification of the resonator.
For selected eigenvalues, VRM will compute the corresponding
eigenwaves at the output mirror plane, and associated overlap in-
tegrals (excess noise factor, cross-power, etc.). 'o_
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ABSTRACT

There is a continuing interest in the design and calculation of laser resonators and optical beam

propagation. In particular, recently, interest has increased in developing concepts such as one-sided

unstable resonators, supergaussian reflectivity profiles, diode laser modes, beam quality concepts,

mode competition, excess noise factors, and nonlinear Kerr lenses.

To meet these calculation needs, I developed a general-purpose software package named

PARMAx", aimed at providing optical scientists and engineers with a set of powerful design and

analysis tools that provide rapid and accurate results and are extremely easy to use. PARXIA can

handle separable paraxial optical systems in cartesian or cylindrical coordinates, including complex-

valued and misaligned ray matrices, with full diffraction effects between apertures. It includes the

following programs:

ABCD provides complex-valued ray-matrix and gaussian-mode analyses for arbitrary paraxial

resonators and optical systems, including astigmatism and misalignment in each element. This

program required that I generalize the theory of gaussian beam propagation through real-valued ray

matrices to the case of an off-axis gaussian beam propagating through a misaligned, complex-valued

ray matrix.

FRESNEL uses FFT and FHT methods to propagate an arbitrary wavefront through an arbitrary

paraxial optical system using Huygens' integral in rectangular or radial coordinates. The wavefront

can be multiplied by an arbitrary mirror profile and/or saturable gain sheet on each successive

propagation through the system. Among other calculations, I used FRESNEL to design a one-sided

negative-branch unstable resonator for a free-electron laser, and to show how a variable internal

aperture influences the mode competition and beam quality in a stable cavity.

VSOURCE implements the virtual source analysis to calculate accurate eigenvalues, eigenmodes,

excess noise factors and cross-power coefficients for unstable resonators with both circular and

rectangular hard-edged mirrors (including misaligned rectangular systems). I used VSOURCE to

show the validity of the virtual source approach (by comparing its results to those of FRESNEL), to

study the properties of hard-edged unstable resonators, and to obtain numerical values of the excess

noise factors in such resonators.

VPM carries out mode calculations and design analyses for gaussian variable-reflectivity-mirror

lasers. It implements complicated analytical results that I derived to point out the large numerical

value of the excess noise factor in geometrically unstable resonators.
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The self-filtering unstable resonator (SFUR) can provide excellent

mode properties for high-gain lasers having active-medium Fresnel num-

bers up to a few times unity or perhaps a few tens. This note is merely

to point out that the SFUR design is generally not suitable for much

larger Fresnel number devices, because the output coupling that results

for single-mode operation with full energy extraction then becomes unac-

ceptably large.
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The self-filtering unstable resonator (SFUR) design shown in Figure 1 has been

proposed and experimentally demonstrated by Gobbi and Reali (1-51 and a number

of other workers [6-111 in recent years. In essence the SFUR is a negative-branch

confocal unstable resonator in which a small aperture through the scraper mirror

also provides an internal spatial filter at the common focal point of the two mirrors.

As this earlier work has well demonstrated, the SFUR cavity is a simple and practi-

cal design which can provide excellent mode properties, including very good beam

quality and good energy extraction, for a wide variety of moderate to high-gain

lasers. It is therefore a very practical and useful design for many laser systems.

The one additional point that I would like to make in this comment is that

despite its many advantages there are some limitations to the use of the SFUR.

This type of resonaoor is associated with the class of "unstable" resonators and

might therefore seem potentially suitable for large Fresnel numbers as pointed out

by Anan'ev [Ul1. What I wish to establish in this comment is that the SFUR is

inherently limited to laser systems with at best moderate values of the laser Fresnel

number, that is to Fresnel numbers on the order of a few times unity, up to a

few multiples of ten at the most. The SFUR design, at least in its basic form, is

not suitable for laser devices in which the inherent Fresnel numbers are much larger

than a few multiples of ten because the output coupling that results for single-mode

operation with full energy extraction then becomes unacceptably large.

This point can be demonstrated as follows. Figure 1 shows the basic parameters

of the SFUR design (the notation and formulas are taken from the paper of Boffa

et al [9]). This and earlier references have demonstrated that if the self-filtering
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aperture in the output coupling mirror has an optimum diameter given by

d =_ 2a _ 2 x (0.61f 2 A)" / 2  (1)

then this resonator will produce a very clean near-gaussian lowest-order mode with

a gaussian spot size w z Ma, where M = fi/f2 is the geometric magnification

of the unstable resonator. The magnitude of the eigenvalue j for the lowest-order

mode and thus the power loss per round trip 1 - i 2 will then be given to a good

approximation by

12 R 1.968' [1 0.60841 (2

The reflectivity value R jI 2 can be viewed as the effective power reflectivity of

the output mirror or output coupler in this cavity.

An additional parameter that is of large practical importance in high-power or

high-energy laser designs is the Fresnel number [M] which characterizes the laser

medium from which the laser mode is to extract power or energy. In particular, if

2A is the diameter and L the length of the laser gain medium, then it is convenient

to define a Fresnel number NT given by

NT = A (3)

This is sometimes called the "tube Fresnel number" because it characterizes the

laser tube or laser rod from which the laser energy is to be extracted. If one is to

obtain significant energy extraction from a laser gain medium of diameter 2A using

a gaussian beam profile with mode spot size w, while avoiding significant clipping

of the gaussian mode by the tube edges, the mode size and the tube diameter need

to be related by a ratio on the order of

2A _- irw (4)
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For the particular case of a SFUR cavity, the tube Fresnel number NT and the

magnification M will then be related by

NVT 5- -T ,, 1.5 x (fI/L) x M (5)
2 LA

Since NT is determined by the laser medium, and M is more or less constrained

by the allowable output coupling through Eq. (2), the only adjustable parameter is

the ratio of the mirror focal length f, (which is also to a first approximation the

overall resonator length) to the length L of the gain medium.

The most difficult situations for laser resonator design arise in high-power lasers

having large-diameter gain media and therefore values of NT that are sometimes

very much greater than unity. A laser tube with bore diameter 2A = 1 cm and

length L = 1 m at a visible wavelength A = 500 nm, for example, has NT ; 50.

Equation (5) indicates that efficient single-mode energy extraction from such large-

NT laser media can only be accomplished with an SFUR design either by using

a very large magnification M, which means very large output coupling and hence

requires very high laser gain, or by using a mirror focal length fi very much longer

than the gain medium length L, or possibly by using a folded multipath arrangment

through the laser medium. The latter arrangments tend to be both mechanically

and optically inconvenient.

To demonstrate this requirement in a graphic fashion, Figure 2 plots the re-

lationship between the tube Fresnel number NT and the effective output mirror

reflectivity R - Ii' 2 for three different ratios of the mirror focal length f, to the

length L of the active laser medium, assuming a SFUR design which satisfies both

the single-mode condition of Eq. (1) and the full power extraction condition of Eq.

(4). (Note that the magnification M is a variable parameter along each of these
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curves.) Note that in each case the effective reflectivity of the output mirror drops

rapidly to values below 10% as the value of NT increases; and that only a few lasers

operate well with output reflectivities of R = 10% or lower. Most of the high-power

and high-energy lasers of practical interest operate best with output couplings of

20% to 50% or larger (though there are of course some exceptions to this).

The general observation from this figure is that the SFUR can provide reason-

able output coupling values or mirror reflectivities for laser gain media characterized

by values of the Fresnel number NT ranging from a few times unity up to perhaps

NT = 10 or 20. The SFUR approach cannot, however, provide a solution for single-

mode operation with good energy extraction in the more difficult case of gain media

with much larger tube Fresnel numbers, because the required values of magnifica-

tion needed to fill the gain medium will make the effective output coupling from

the cavity larger than can be tolerated. Lasers with larger values of NT will require

the use of some combination of either the original hard-edged unstable resonator

approach [13] or some form of variable-reflectivity-mirror (VRM) resonator design

[5,14] or possible some form of injection locking or seeding [7], along with possible

folding or multipass operation of the laser cavity.
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FIGURE CAPTIONS

Fig. 1. Basic self-filtering unstable resonator (SFUR) design. The gain medium is

assumed to have an outer diameter 2A and to extend over a length L < fI.

Fig. 2. Effective power reflectivity R M ifj2 of the output coupling element versus

Fresnel number NT A2 /LA for SFUR designs with three different values of

mirror focal length f1 to active gain medium length L. (The magnification M

is a variable parameter along each of these curves.)
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In the retrospective part of this talk I'd like to take a look backward at the
many important and interesting concepts in optical resonators that have evolved
since lasers were first developed some three decades ago.

Then in the prospective part I'll take a look forward at some of newer ideas
that are now emerging, or that have recently been revitalized, and that are likely
to play an important role in the coming decades.

Except in few cases I will not try to identify the people who made all these
contributions. Let me apologize in advance to those whom I do not mention, and
also to those whose favorite ideas I may have overlooked.

But I would particularly like to Jacques Arnaud who, along with several
others, made helpful suggestions for this talk; the Air Force Office of Scientific
Research which has supported nearly all of my research in this area over the
years; and the many students and other colleagues with whom it has been such
a pleasure to work on these resonator ideas over the past several decades.



An overall list of the most important ideas that have been developed in optical
resonator theory and practice would surely include all of the following areas:

LASER RESONATORS: RETROSPECTIVE

* The existence of modes in open-sided resonators

" Ray matrices and gaussian beams

" Gaussian resonator modes

" Generalized paraxial wave optics

" Unstable optical resonators

" Biorthogonality properties of optical resonators

" Frequency-selective and tunable laser cavities

" Other beam and resonator ideas

We'll try to take a more detailed look at some, though not all, of these topics.
Let's walk through them quickly, one by one.
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Some of the important basic ideas that emerged in the first days of the laser
era included the following:

Existence of "Modes" in Open-Sided Resonators

o The Fabry-Perot laser cavity concept (Schawlow and Townes)

o The first Fox and Li recirculating-pulse calculations

o Gobau's beam waveguide ideas

o The equivalent periodic lensguide viewpoint

o Existence of unique resonator eigenmodes and eigenvalues

o Existence of low-loss curved-mirror resonators

o Importance of the resonator Fresnel number

o Transverse modes and transverse mode beats
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The ideas of ray matrices or ABCD matrices, and of gaussian beams and
resonators, and of the interconnections between them, have been evolving in
tandem ever since:

Ray Matrices and Gaussian Beams

o Ray matrices (ABCD matrices)

o Periodic focusing systems and periodic lensguides

o Ray matrix eigenvalues and eigenrays

o Stable and unstable periodic focusing systems

o Hermite-gaussian optical beams

o Gaussian beam propagation rules

o The complex radius of curvature or gaussian j parameter

o Imaginary source points, the confocal parameter, and the Rayleigh
range

o Focal phase shifts and the Gouy effect

o Gaussian ducts and graded-index (GRIN) rods and lenses

o Gaussian mode matching and the Collins chart

o Ray matrices and Huygens' integral
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Developing the analytical and experimental understanding of gaussian cav-
ity modes and their application in lasers has been an important part of this
subject-and also one of the many areas in which R. V. Pole made fundamental
contributions:

Gaussian Resonator Modes

o Stable and unstable paraxial optical resonators

o Hermite-gaussian and Laguerre-gaussian resonator modes

o Relationship to periodic focusing systems

o The resonator stability diagram

o The confocal cavity concept

- Wieder and Pole's conjugate-concentric laser cavity

- Scanning Fabry-Perot interferometers
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In fact, we've now come to understand that not just geomerical optics but
essentially all of diffraction optics in the paraxial approximation can be incorpo-
rated into a generalized complex-valued ray matrix and paraxial optical formu-
lation of optical beams and resonators:

Generalized Paraxial Wave Optics

o Gaussian apertures as lanses of imaginary focal length

o Complex-valued optical elements and ABCD matrices

o Complex-valued paraxial optical systems

o Hermite-gaussian functions of complex argument

o Complex spot sizes as well as complex 4 parameters

o Generalized paraxial resonator analysis

- Confined and unconfined gaussian modes

- Geometrically stable and unstable gaussian modes

- Perturbation-stable and unstable gaussian modes

- Huygens integral and complex-valued ABCD matrices
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The unstable resonator of course represented a different, complicated, chal-
lenging, and very useful area of resonator theory and practice:

Unstable Optical Resonators

o Stable modes in "unstable" systems...?

o Geometrical mode solutions for unstable resonators

o Magnifying and demagnifying spherical wave solutions

o Positive-branch and negative-branch resonators

o Real unstable resonator eigenmodes and eigenvalues

o FFT, FHT and Prony computational methods

o Mode crossings and the equivalent Fresnel number

o Confocal unstable resonators

O Self-imaging unstable resonators

o Edge waves, and the Poisson Spot or Spot of Arago

o The asymptotic approach, or "virtual source" analysis

o Self-focusing (SFUR) unstable resonators
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Some of the most interesting aspects of optical resonators arise from the fact
that, unlike most physical systems with which we are familiar, laser cavities are
generally not described by a Hermitian operator, and therefore their resonant
modes are not orthogonal-especially the modes in unstable optical resonators:

Biorthogonality Properties of Optical Resonators

o Optical resonator modes are NOT in general power orthogonal

o More power in one mode than total power in all modes...?

o Matched coupling and adjoint coupling methods

o Excess quantum noise in unstable resonator modes
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There are many other intriguing and ingenious ideas related to laser res-
onators that have also been developed over the years, in order to solve one or
another of the practical problems facing the laser designer:

Frequency-Selective and Tunable Laser Cavities

o Multi-mirror cavities

o Michelson, Fox-Smith, and vernier interferometer cavities

o Tunable birefringent filters

o Prism beam expanders

o Etalon mirrors

o Sagnac interferometers and antiresonant ring cavities

o "Twisted-ribbon" laser cavities

9



And still more clever ideas, inventions and concepts that have been applied
to less conventional sorts of laser resonators and laser beams:

Other Important Beam and Resonator Ideas

o Ring laser cavities and optical diodes and isolators

o Optical diodes and isolators

o Distributed-feedback (DFB) cavity concepts

o Distributed Bragg reflector(DBR) cavity mirrors

o Waveguide lasers and waveguide laser cavities

o Heterojunction diode laser structures

o Corner-cube and rooftop resonators

o Axicons, waxicons, reflaxicons, HSURIAs, and so-ons

o Whispering gallery modes and "droplet" resonators

o Pulse compressors, grating and prism dispersive systems

o Image relay systems and supergaussian beam profiles

10



Just making up the preceding lists of topics, without examining them in
detail, shows how far we've come, and how many new and interesting ideas have
emerged in the resonator field. And yet the topics mentioned so far do not even
include all of the complex aspects of laser oscillation and laser mode dynamics,
such as are illustrated by the following topics:

Laser Oscillation and Laser Dynamics

o Laser gain saturation effects

o Mode build-up and mode competition

o Spiking and relaxation oscillations

o Laser Q-switching

o Axial mode coupling and mode-locking

o Instabilities and chaotic behavior of laser oscillators

11



Nor do these lists include the even more complex world of nonlinear optical
propagation effect, and optical mode behavior, as briefly summarized in the
following list:

Nonlinear optical propagation effects

o Concept of phase matching in nonlinear optics

o Self-focusing and trapping

o Self-phase-modulation

o Optical bistability

o Optical phase conjugation

o Optical chaos in passive beams and resonators

o Solitons

12



But now, in the remaining time, let's turn to the "prospective" portion of
this talk, and take a look forward at some newer ideas now emerging that will
play an important role in coming decades.

Of course, some of these "new" ideas are in fact older ideas that are only
now becoming really important in practical laser designs, while others represent
ingenious new ideas, developed to solve new problems.

In any event, I believe a broad overview of the ideas now emerging in the
laser resonator field would surely include emerging developments in each of the
following three areas:

LASER RESONATORS: PROSPECTIVE

" New kinds of resonators for new kinds of lasers

" New developments in diode laser resonators

" New design tools and beam diagnostic methods

Again, let's take a look at each of these topics in more detail.

13



There are several new kinds of resonators that are now emerging for use in
new kinds of laser devices that have great promise for the future. A list of these
new resonator concepts might include the following, and I'll try to say a few
words about each:

New Kinds of Resonators for New Kinds of Lasers

* Tapered reflectivity and VRM laser cavities

- Advances in tapered-reflectivity mirror fabrication

- Supergaussian mirrors and mode profiles

" Fiber-optic resonators

- Couplers, rings, interferometers, fiber gyros

" Miniature and monolithic laser cavities

- Diode-pumped solid-state lasers

- Integrated-optical resonator structures

- "Platelet" laser structures

" Nonplanar ring resonators

- Monolithic diode-pumped NPR lasers

- "UR-90" single-sided unstable resonators

" Advances in high-power slab laser designs

* Coupled lasers and laser oscillator arrays

" Advances in FEL resonator designs

14



Of course one of the most important and active areas of current laser research
is in the burgeoning world of semiconductor diode lasers, where many fascinating
new resonator concepts are emerging to meet the special needs and constraints
of this class of lasers:

New Developments in Diode Laser Resonators

" Coupled-stripe diode laser arrays

" Antiguidinge (ROW) diode laser stripe arrays

" Talbot-plane and Talbot-mirror resonator concepts

* Grating-coupled surface-emitting diode lasers

" Active on-chip waveguide structures and MOPA chains

* Stable-unstable resonator concepts for diode lasers

" Vertical-cavity surface-emitting diode laser structures

" Etched-facet diode laser mirrors

Some of the ideas listed above will turn out to be of great practical importance
in the future, and I expect some of them will be only of historical interest a few
years from now. We'll just have to wait and see, however, which of these ideas
fall into which of these categories!
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Finally, I'd like to say a few words about three current developments in design
tools and diagnostic methods related to laser resonators and beams in which I've
been fortunate to have had some involvement:

New Design Tools and Diagnostic Methods

" New measures for specifying and determining laser beam quality

" Resonator analysis and design using personal computers

" Ray-pulse matrices for dispersive optical systems

16
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First of all, after talking for several decades about "laser beam quality" we
are finally getting around to developing real instruments that will really measure
real laser beam quality. In fact an instrument that does just this in real time will
be on display for the first time at this meeting. (It's been developed by Coherent,
Inc., if I may be allowed mention of a commercial product.)

At the same time we're developing new ways of defining the quality of an
arbitrary laser beam, and making theoretical use of this definition. Part of this
is based on still another extension of ABCD matrix theory: new understanding of
how the moments of an arbitrary (nongaussian) beam can be propagated through
an arbitrary paraxial system, using only the ABCD matrix elements.

I'd also like to mention briefly the development by my students and my-
self of resonator and optical beam analysis and design programs that can be
implemented on desktop personal computers rather than mainframes. We've
developed a set of four useful programs for doing laser beam propagation and
Fox-and-Li type resonator calculations, unstable resonator design and analysis,
and the analysis of complex ABCD matrix systems.

These programs will become available from Stanford University some time
later this summer. They run on Macintosh computers, and can do nearly every-
thing that used to be done a decade or more ago on mainframe supercomputers.

Finally I'd like to mention a very general and powerful "ray-pulse matrix"
formulation recently developed by one of my students, Ad Kostenbauder. This
formulation extends the familiar ray-matrix formalism to include both spatial
and temporal (or spectral) variations, making it possible to handle both the
time and the space dependence of optical beams and pulses in one calculation.

This requires 4 x 4 rather than just 2 x 2 matrices, of course, but this approach
has already proven extremely valuable for calculations like the propagation of
femtosecond pulses in dispersive optical systems and the behavior of dispersive
prism and grating beam expanders.
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In conclusion, I think one can only be impressed first by the large number
of clever and innovative ideas that have been developed in this field over the
years, and second by the often remarkable simplicity and elegance of the basic
underlying principles that have emerged. It really seems that the most important
ideas are often the simple ones, and that nature rewards us with elegance in the
most basic ideas.

I think R. V. Pole recognized these principles, and practiced them in his own
work, and I'm honored to speak today in his memory.

Looking at the present and the future, one can also still find great vitality
in this field, with a set of challenging new problems and, one hopes, still more
interesting and elegant ideas yet to come.

I'd like to thank once again the CLEO/IQEC organizers for inviting me to
speak, especially Steve Guch who suggested the title for this talk; and the many
students and colleagues who've stimulated me and contributed to my work over
the years.

And, I'd also like to acknowledge once again the research support from the
General Physics division of the Air Force Office of Scientific Research (AFOSR),
which has made possible almost all of my own work and that of many others in
this field.
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Defining the Effective Radius of Curvature for a Nonideal Optical Beam

A. E. Siegman

Abstract-A simple expression is given for evaluating the ef- G(z)
fective or average radius of curvature R(z) of an arbitrarily
wrinkled, distorted, or nondiffraction-limited optical beam. R,
This real-beam radius of curvature obeys the same free-space
propagation equation as does the wavefront curvature of an
ideal Gaussian beam; and extracting this "correctable curva- 20

ture" from the beam at any plane simultaneously collimates the Z1
beam, makes that location a waist for the real beam, and min- Fig. 1. An arbitrary nondiffraction-limited optical beam propagating out-
imizes the far-field beam divergence starting from that posi- ward from an input plane z = z, towards a waist at z = z .

tion.

which shows that individual components of P(s, z) rotate
ONSIDER a monochromatic optic beam propagating in phase, but do not change in magnitude with distance z.
within the paraxial approximation, but suppose that We also assume for simplicity that P(x, z) is normalized

this beam is, in general, neither spherical nor collimated so that r*. I 9(x, z)l 2 dx = Jr-. IP(s, z)f 2 ds = 1.
nor diffraction-limited. To say this in another way, the It can then be shown that the variance a 2(z) of this real-
wavefront of the beam across any transverse plane may beam profile in the transverse direction, evaluated using
be wrinkled as well as curved, and the transverse ampli- the intensity distribution I!E(x, z)12, will have an axial
tude profile may have complicated and irregular varia- variation given by
tions as well. What, then, is an appropriate definition for
the effective or averaged or "removable" radius of cur- 0E(z) = a2 (zl) - A, x (z - zS) + h o2 x (z -

vature R (z) of this real-beam wavefront at that transverse (4)
plane? The purpose of this note is to show hpw to define
an effective radius of curvature R(z) for such a real or where or2(zI) is the spatial variance at the input plane z =

nonideal laser beam. z; o is the variance of the beam in the angular or spatial-
By way of analytical background, let the complex pha- frequency domain, evaluated using the spatial-frequency

sor amplitude profile £(x, z) of this beam be specified at intensity distribution I/P(s, z)12; and A, is the value of the
a plane z = zl which is not necessarily coincident with function
the waist location z = z0 of the beam, as illustrated in
Fig. i. The phasor amplitude £(x, z) of the beam at any A(z) M _j _X P ( OP*(s, z)

plane z can then be related to a complex phasor amplitude 2w 0, s z) Os
P(s, z) which describes the beam in the angular or spatial- VP(s, z)1
frequency domain through the Fourier transform relation - P*(s, z) as-- ds (5)

E(x, z) = 70 P(s, z)e - j 2
rs ds (i) evaluated at z = zl. The Fourier transform relations be-

tween E(x, z) and P(s, z) imply that there will be corre-
with P(s, z) given by the reverse transform sponding Fourier transform relations between the quan-

tities aE(x, z)/Ox and -j2sP(s, z), and also between

P(s, Z) = (x, z)e±j 2Tis dX. (2) the quantities xE(x, z) and -(j/2w) OP(s, z)/Os. If these
Fourier transform relations are substituted into (5), the

The spatial frequency variable s is related to the angular function A (z) can also be written as
direction 0 of a corresponding plane-wave component of X M' 8O*(x. z)
the beam by s m X- I sin 0, which becomes 0 - Xs in the A(z) = +j 2 x (x, z) Ox
paraxial approximation. The spatial-frequency distribu-
tion P(s, z) then propagates in free space according to - *(x, )t (x. z) 1

P(s, z) = P(s. z)e +pr 'Xj2- :_ ) (3) ax )

Manuscript received November 20, 1990. This work was supported by with A, again being this function evaluated at z = z.
the U.S. Air Force Office of Scientific Research. The axial variation of o2(z) in (4) can be rewritten as

The author is with the Edward L. Ginzton Laboratory. Stanford Univer-
sity. Stanford. CA 94305. an expansion about a waist location z = z0 in the form
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X[I(+2 same free-space propagation rules as do the correspond-
0

2(z) = gX + z (7) ing quantities for an ideal Gaussian beam.
z / . Another way of arriving at the curvature definition in

where ao is the minimum value of the spatial variance at (9) is to ask what is the radius of curvature R (z) for a real-
the real-beam waist, given by a = a,(z) - A2/4X2 

C, beam wavefront at any plane z which, when extracted from
and zo is the waist location which is related to z, by zo = the inpui phasor amplitude E(x, z) at this plane, will make
z, + A1 /2 X 2 o. It is also convenient to introduce a beam the modified wavefront at this plane be a waist, which
quality factor [2], [31 which is related to the space-beam- means, in turn, that the modified value of A (z) after this
width product orous for the real beam by M 2 = 41roos. extraction should be zero. This would seem to be a mean-
This quality factor has the property that M 2  

I 1 for any ingful way of defining an effective radius of curvature for
real beam, reducing to the limiting value M2  1 only the real beam since it determines what radius of curvature
for an ideal TEM~o Gaussian beam. Equating the quad- has to be extracted from the real wave using an appropri-
ratic terms in (3) and (7) then gives a formula for the Ray- ate thin lens to convert it into a collimated beam waist.
leigh range ZR of the real beam, namely, To determine this removable curvature, we can suppose

that the input wave !(x, z) at plane z is passed through a
4iro(8 thin lens of focal length f so that the beam wavefront is

zR M2X (8) transformed to

This is the same as the formula for the Rayleigh range of '(x, z) = E(x, z) X exp +j x1)

an ideal TEMOO Gaussian beam with waist variance oro, ILfXi
which is zR = iwo/X = 4W'o2 /X, except that the Rayleighrange ZR for a real nonideal beam is reduced by the factor where '(x, z) is the collimated (although potentially still

M 2 
> 1. Equation (7) confirms that any arbitrary real wrinkled) phasor amplitude for the wave that will be leftbeam always has a waist, with a spot size or variance after the effective curvature has been removed using thewhich varies quadratically on either side of the waist just lens of focal length f. This is sometimes referred to as

like an ideal Gaussian beam, except that the Rayleigh removing the 'correctable divergence" of the beam at the
range for the real beam is reduced by the beam quality plane z. The modified valuc of the integral A (z) after this
factor M 2. curvature-extraction process will be given by

A general expression for the effective radius of curva- X at r ,.,
ture R(z) of any real-beam wavefront at any arbitrary plane A'(z) = -j 2 x71 ' -ax - I dx
z can then be written as

I -A(z) = A(z) + ) (12)

R(z) 2a 2(Z) (9) f

where A (z) can be evaluated using either (5) or (6). This Requiring that A'(z) = 0 after the lens then gives
expression may not be entirely new. Essentially this same I 1 -A(z)
formula was used on an empirical basis as a way of ex- 0,2(Z) (13)
tracting the macroscopic wavefront curvature in early nu- f R 2

merical beam propagation calculations [4], and the same exactly as expected.
formula has also arisen in recent work by Belanger [5]. As another approach to the definition of effective cur-
The primary objective of this note, in light of current dis- vature, we can note from (4) that the far-field angular
cussions of laser beam quality and laser beam laser beam spread of an arbitrary beam is directly proportional to the
propagation, is to reiterate the usefulness of (9) as the spatial-frequency standard deviation q,. The effective ra-
basic definition of effective wavefront curvature, and to dius of curvature for an arbitrary wavefront would then
point out three or four different ways in which this defi- seem to be that radius which, if extracted from the wave-
nition is physically meaningful as an effective radius of front using a thin lens as above, will minimize the result-
curvature. ing value of a2. From standard Fourier transform identi-

The physical significance of the definition of R(z) given ties, the value of o, can be calculated using either of the
in (9) can be demonstrated first of all by noting that this expressions
definition, together with the other equations above, leads
to the free-space propagation law f* aE or, Z)-

to the ree-spce propgationlaw sj(s. z)1 ds ='j) ~ a x.2

R(z) = (z - zo) + -R (10)
(z - Z1) (14)

where ZR is the same real-beam Rayleigh range as in (9). Let the complex wavefront E(x, z) at plane z again be
In other words, with the use of the real-beam Rayleigh passed through a lens of focal length f so that the wave-
range, both the real-beam variance o2 (z) from (7) and the front is modified as in (II). Putting this modified wave-
real-beam effective radius R(z) from (9) obey exactly the front into the last integral in (14) shows that a2 after the
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lens is modified to once the average phase curvature R(z) has been extracted
2 from the wavefront at any plane z, the resulting value of2 A (z) a 2(Z)

0" = 0s + T- + 2--. (15) s after the lens becomes the minimum value for that plane
given by

The value off which minimizes o is then exactly the same 2

as in (13). .min(Z) = o'(z) - R( (18)
Finally, we can note that if the complex phasor ampli- )

tude of the beam is separated into amplitude and phase But this says that the total far-field divergence of the beam
functions in the form before the curvature is extracted can be written as

E(x, z) w I R(x, z)l exp [-j(x, z)] (16) ,= a in(Z) + 2(
ar;(, =OS.ranZ /R (Z)X/. (19)

then the general definition of (9) can be written as R )

I - X C O xo(x'z)) In other words, the far-field angular beam spread a, of an
R(z=) 2 2 (x ) j(x' z) j2 dx. (17) arbitrary beam at any plane z can be viewed as the rms

S / combination of a correctable or removable portion

This says that 1/R(z) represents a weighted average of a(z)/XR(z), which is proportional to the average wave-
the wavefront curvature term Ix O4J(x, z)/Ox] across the front curvature 1/R(z), plus an irreducible portion
wavefront, which is physically reasonable. Inserting the a,.min(Z) which cannot be removed with any simple fo-
purely spherical form 0 (x, z) = rx2 /R (z) X will confirm cusing element. A direct analog to this far-field expres-
that the integral in (17) converges to the expected value sion which applies instead to the time duration and the
R(z). spectral bandwidth of chirped pulse signals in time was

To recapitulate, we have shown that any real or non- pointed out some time ago by Pohlig [6].
ideal laser beam with a wrinkled or nonspherical wave-
front will have an effective radius of curvature R(z) given REFERENCES
at any arbitrary plane z by the expression in (9). The axial Ill M. R. Teague. "Irradiance moments: Their propagation and use for
variation of this effective radius R(z) is then given rigor- unique retrieval of phase," J. Opt. Soc. Amer., vol. 72, pp. 1199-
ously by the Gaussian-beam-like formula of (10). Extract- 1209, 1982.
ing this curvature from the wavefront at any plane both 121 A. E. Siegman, "New developments in laser resonators," in Laser

Resonators, D. A. Holmes, Ed., Proc. SPIE. vol. 1224, pp. 2-14.
converts the beam profile to a waist at that plane and min- 1990.
imizes the far-field spread of the beam starting from that 131 A. E. Siegman. M. W. Sasnett. and T. F. Johnston, Jr., "Defining

and measuring laser beam quality: The M2 factor," in preparation.plane. The close identification between the propagation 141 E. A. Sziklas, United Technol. Res. Lab., East Hartford. CT. and

formulas for the real-beam values of a2 (z) and R(z) given K. E. Oughstun, Univ. Vermont, Burlington. private communications.
in (7) and (10) and the corresponding formulas for an ideal 151 P. A. Belanger. "Beam propagation and the ABCD ray matrices."

Opt. Len., to be published.
TEMoo Gaussian beam is both remarkable and useful. 161 S. C. Pohlig. "Signal duration and the Fourier transform," Proc.

As a final note, we can observe from (15) above that IEEE. vol. 68, pp. 629-630, 1980.
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Choice of Clip Levels for Beam Width Measurements
Using Knife-Edge Techniques

Anthony E. Siegman, Fellow, IEEE, M. W. Sasnett, and T. F. Johnston, Jr.

Abstrae-Tbe scanning knife-edge technique provides one of across the beam profile in, say, the x transverse direction
the better methods for measuring the width of an optical beam while detecting the transmitted intensity reaching a large-
having an arbitrary or irregular transverse profile. To imple-
ment this method, however, one must select both a clip level area photodetector as the knife edge opens up the beam.
and a scale factor for converting the measured clip width into The first derivative of this detected intensity versus scan
an effective width of the laser beam. We show that the pre- position x gives an indication of the beam intensity profile
ferred clip level for beam width measurements using this tech- in the x direction, integrated over the y direction.
nique should be chosen in the range between e - 8.5% and e Although the complete knife-edge profile contains use-
- 11.6%. With a suitably matched clip level and scale factor ful information, in many cases one wants only a single
within this range, the conversion from measured clip width to
standard deviation can be made exactly accurate for TEMIO number to characterize the effective size of the beam in
Gaussian beams, and the conversion factor will become only each of the x and y directions. In this case, one can use
slightly Inaccurate for a wide range of other higher-order or the "clip width" of the beam measured in each of the two
poorer-quality beam profiles, transverse dimensions. The clip width D, for the beam in

either direction is defined as the width between points in
the scan where the transmitted intensity passing the knife

I. INTRODUCTION edge rises from a lower clip level c P0 to an upper clipD ETERMINING the spot size of a laser beam, whether level (1 - E)P0 where P0 is the total power in the beam.
in the near- or far-field region is a fundamental prob- Clip levels in the range around 10% and 90% are often

lem in laser diagnostics. The transverse profiles of real used.
laser beams are sometimes very irregular in shape, dis- Selecting an optimum clip width and an associated scale
playing multiple peaks and lacking clearly defined edges. factor for such knife-edge measurements is the primary
Even defining the width of a laser beam in a meaningful topic of this paper. We show that 1) there is an unavoid-
way can be difficult for an aberrated or multimode laser able error or uncertainty in converting such clip width
beam with an irregular intensity profile, let alone measur- measurements into more theoretically significant mea-
ing this width experimentally. sures such as the standard deviation of the beam in the

One precisely defined width parameter that is of fun- same direction; and 2) any clip level e in the range be-
damental significance for any laser beam is the standard tween about 8.5 % and 11.6%, together with a scale factor
deviation a., evaluated in the x transverse direction over based on an ideal TEM~o Gaussian beam, can be about
the beam intensity profile. The variances a. and uY evai- equally valid as a standard definition for knife-edge mea-

uated in two transverse directions across an optical beam surements on a wide variety of real laser beams.
profile play a particularly significant role in theoretical
beam propagation analysis and in definitions of laser beam II. CLIP LEVEL AND SCALE FACTOR SELECTION
quality. Making a direct measurement of the standard de-
viations or, and a, for a real beam profile can be difficult A. Scale Factor Errors in Clip Level Measurements
in practice, however, since this requires first an accurate The clip width D, for any specific beam, measured
measurement of the two-dimensional intensity profile I(x, using a specified clip level , is of course a definite and
y) and then accurate calculation of the first and second fairly easily measured quantity. The standard deviation a,
moments of this profile. of the beam in the knife-edge scanning direction, whichA much simpler and more widely used measurement is atechiqu isthescanin knie-ege ethd. n t is aquantity of more theoretical significance, can then be
technique is the scanning knife-edge method.ns estimated from the measured clip width using a suitable
method, one scans an opaque knife edge transversely scaling factor S such that a, = D,/S. There is, however,

an unavoidable uncertainty in going from measured clip

Manuscript received September 10. 1990. The work of A. E. Siegman width to the more fundamental standard deviation in this
was supported by the Air Force Office of Scientific Research. fashion. The exact scale factor or the exact value of the

A. E. Siegman is with Stanford University. Stanford, CA 94305. ratio D/o for an arbitrary beam will depend not only on
M. W. Sasnett is with Coherent. Inc., Palo Alto, CA.
T. F. Johnston, Jr., is with Coherent. Inc.. Auburn. CA. the clip level employed but also to a certain extent on the
IEEE Log Number 9144338. exact shape of the laser beam.
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To put this in another way, different beams having the
same standard deviation a, will give slightly different 1 0.20 - ,e01o')
measured clip widths D, depending on the exact profile . ".1
and modal content of the beam, which is assumed to be 0.10 .0.05

unknown. Hence, there will always be some uncertainty 0,0'

in the scale factor S that should be used to transform from E o.2 n= 2A L5 3 &4

the measured clip width D, to the more theoretically in- -do Dc /
ind (0 1 _.r" .- ' . -'o

teresting value q., In practice, one selects the scaling fac- mo.(1 (n =wo)
tor S to match the calculated value D/ao. for some stan- C . ..
dard beam profile, preferably a TEMoo Gaussian profile . . 9- 0.% .....------------
This scale factor will then, in general, exhibit some error
when applied to other beam profiles. Our primary objec- 0.W1
tive in this paper is to show how to estimate and minimize D / Ox
these errors for a wide range of real beam profiles, by
examining the theoretical clip level versus clip width Fig. I. Fractional power falling outside a given clip width D, on one side

plotted versus D,./a, for several low-order Hermite-Gaussian modes. Showncurves for a representative sample of different beam pro- in this figure are the two lower-order Hermite-Gaussian modes n = 0 and
files. n = 1; the donut mode (incoherent mixture of TEMpt0 and TEM01 ); a ring

mode which corresponds to the asymptotic Hermite-Gaussian case with n
B. Low-Order Gaussian Beams -. 0; and two suggested clip levels at ( = 8.5% and f = 11.6%. The

insert shows experimental data for the TEMx) and donut modes measured
Fig. 1 shows by way of example the fractional power on the same argon-ion laser using a knife-edge system with an adjustable

falling outside a given clip width D, on one side of the clip level.
beam only (which is the same thing as the clip level e) for
several different Hermite-Gaussian (HG) or Laguerre- From this figure it appears that a uselul alternative
Gaussian (LG) optical beam profiles. The fractional power choice could be to select a clip level E = 8.485% and a
in each case is plotted versus the clip width D, normalized scale factor S = 2.746. This choice would give exact re-
to the standard deviation a. for that specific beam. The suits for both the TEM00 mode and the donut mode, with
four mode profiles considered in this figure are: 1) the scale-factor errors of plus or minus a few percent for the
lowest-order or n = 0 Hermite-Gaussian mode, which other modes shown. As an experimental confirmation of
corresponds also to a TEMoo mode in two transverse di- this point, the smaller plot in Fig. 1 displays clip widths
mensions, 2) the first antisymmetric or n = 1 HG mode, measured on the same argon-ion laser beam under two
which would correspond to a TEMI0 but not an TEMOI different operating conditions, using a scanning knife-edge
HG mode in two transverse dimensions; 3) the "donut" system with an electronically adjustable clip level. In one
mode, or Laguerre-Gaussian TEM*', mode, which often case, the laser was operated in a TEMoo mode as deter-
appears as a perturbation in stable-resonator laser oscil- mined by a suitable intracavity mode-control aperture. In
lators, and which corresponds also to an incoherent su- the other case, a Brewster plate with a small defect burned
perposition of TEM,0 and TEM 1 HG modes; and finally into one spot on the plate was positioned within the ion
4) an annular ring mode which represents an asymptotic laser cavity so as to force oscillation in the donut mode
approximation for a very high-order HG mode, as dis- within the same cavity mirrors. Single-transverse-mode
cussed below. Note again that the horizontal axis in each operation was confirmed in each case by the absence of
case is scaled to the standard deviation a, of each given any transverse mode beats. The measured clip widths in
mode, and not to a common Gaussian spot size w char- the two cases were then scaled to the appropriate standard
acterizing the family of modes. deviations a_ assuming a common Gaussian spot size pa-

The dashed lines on this plot show that if one selects, rameter w for the two modes in the same resonator, with
for example, a clip level E = 11.59% and a scale factor w being measured on the TEM~o mode. The measured clip
S = 2.392, knife-edge measurements using these param- level curves intersect at almost exactly 8.5 % as predicted,
eters will yield exactly accurate values of a, for beams and this intersection occurs at a Dr/a, ratio of 2.75 as
consisting of either pure TEM~o or pure HG n = I (al- also predicted by the theory.
though not, in general, for mixtures of these two modes). Either of the two clip levels E = 8.5% or f = 11.65%
Using this same clip level and scale factor for the other might be regarded as "natural" choices, at least for beams
modes shown will slightly underestimate the scale factor made up of HG mode mixtures. We will show more gen-
or overestimate the value of a,, with an error in the range erally, however, that any choice of clip level between
of 5-10%. because the scale factor S will be slightly dif- these two extremes will give a very similar range of errors
ferent than the exact D,./o. values for these modes at this for a very wide range of optical beam profiles, whether
selected clip level. (Note again that in a simple automated Hermite-Gaussian in character or not.
knife-edge measurement, only the clip level E and clip
widlh D, will be directly determined, and one will in gen- C. Higher-Order Hermire-Gaussian Beams
eral have no direct knowledge of the exact beam profile Fig. 2 shows curves of the same structure as Fig. I with
being measured.) the donut mode removed for simplicity and with higher-
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Fig. 2. Clip level Plot %iiillr to Fig. I with the donut mode removed and O5
higher-order 11G modes from n = 2 to n = 7 added.

order Hermite-Gaussian modes with indexes ffrm n =2 silt

up to n =7 added. From this figure it is evident from the M t*, at

curves for the higher-order HG modes oscillate in a reg- E 0 - M W

ular fashion about the "ring mode" or asymptotic HG n n=o.-s

- oo curve introduced in Fig. 1. This behavior can be
understood as follows.

T h e o n e -d i m e n s i o n a l i n t e n s i t y p r o fi l e s f o r h i g h e r -o r d e r ---- - -----.... ..... .. ..... ...

Hermite-Gaussian beams have the general form 4,(x) =

,(vfx,) exp (-2x2 /w 2 ), with standard deviation o.,

- -n + I w/2. The Hermite-Gaussian intensity profile 00 2.o 4.0

for the specific case n = 10 is shown by the solid line in Dc / 0 x

Fig. 3. But this mode profile is also the well-known quan- Fig. 4. Clip level plot similar to Fig. I with various other simple beam

turn probability distribution for a one-dimensional quan- profiles added.

tum harmonic oscillator. As many quantum theory texts
point out, when the mode index n becomes large, these laser beams will in many cases not be single Hermite-
Hermite-Gaussian profiles with the high-frequency peri- Gaussian or Laguerre-Gaussiaii modes, but rather may
odic variation averaged out approach the one-dimensional have a variety of more complex forms. These more com-
probability distribution for a classical particle executing plex profiles can nonetheless be viewed, if one wishes, as
sinusoidal harmonic motion in one dimension. The latter either coherent or incoherent superpositions of Hermite-
distribution has the normalized form Gaussian modes (other basis sets could of course be used

x- equally as well). Our assumption is that if one uses a mea-

lim /(x) - UX) = l I X surement procedure that is demonstrably accurate for the
,r x "- limiting case of an n = 0 Hermite-Gaussian beam, and

that has a small -nd bounded error for all higher-order
Hermite-Gaussian modes, then this procedure i) will be

with the outer width and the standard deviation being re- most accurate for the most important case, namely, low-
lated by x,. = /2 o. This limiting profile is indicated by order and thus high-quality beam profiles, and 2) it may
the dashed line in Fig. 4. have only small and well-understood inaccuracies for ar-

But a classical particle oscillating sinusoidally in one bitrary beams, which can always be described as mixtures
transverse dimension has the same probability distribution of higher-order Hermite-Gaussian modes. The latter as-
with respect to that dimension as does a particle traveling sumption is, unfortunately, not entirely correct, as we will

at constant velocity around a circular orbit in two trans- demonstrate in the following.
verse dimensions. As a result, the asymptotic one-dimen- To supplement the HG and LG examples of Figs. I and
sional intensity distribution for HG modes as n - oo also 2, several other elementary beam profiles including uni-
represents equally well the one-dimensional distribution form top hat and uniform rectangular beams, and dia-
for an infinitely thin annular "ring" beam with equal in- mond-shaped and "picture-frame" beam profiles. have
tensity around the annulus. been plotted in Fig. 4 along with the same low-order

Gaussian beams as in Fig. i. The picture-frame mode,
D. Other Elementar" Beam Profiles representing a beam profile in the form of a very thin

The focus on Hermite-Gaussian modes in Figs. I and square annulus, is something of an "odd man out" in this
2 may merit further discussion. The mode patterns for real plot, with a clip level that jumps instantaneously from 0
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to 25% at the point where the knife edge encounters the *60 *0-0 No
flat edge of the picture frame. 0.13

Fig. 5 shows an expanded view of the clip level region
between e = 7% and E = 13% with all the curves shown 11.6 -
in Figs 1-4 included. Three potential clip levels and scale
factors are also indicated, namely, the clip level at 11.6%
where the TEMoo and HG n = I modes will have equal -1 -.0% ---
D, /a, values; the clip level at 8.5% where the TEMoo and
the donut modes will have equal D,./o, values; and a com-
promise value arbitrarily located at the 10% clip level. --- -
The sum total of the results in Figs. 1-5 give a reasonable
(although unfortunately not complete) indication of the
spread in scale factors that might be encountered for real 0.072

laser beams in practice. The iniddle choice f = 10% might Dc I0 x
represent a reasonable compromise between the two outer
values, with a range of scale factors which remains small (a)
for low-order Hermite-Gaussians and is distributed more
or less symmetrically about the TEMoo scale factor. * ** n 2 t, 7 *

In all of these cases, we chose a scale factor S which
will be exac:ly correct for a TEM~o Gaussian beam. This
is done for two reasons. First, in real lasers using stable

resonators and having good beam quality, the output mode
will often be very close to a TEMO beam; to get the most
accurate results in this case, one should select a scale fac- E ---0--

tor which applies to that beam. Second, in the more gen-
eral case of more irregular beam profiles, the "beam qual-
ity" for an arbitrary beam is most often defined in a

manner which uses the TEM~o beam as a reference stan-
dard. Beam quality measurements using the TEM00 scale I.

factor will therefore become most accurate in the impor- 22 DA &0

tant limit of good quality beams, and the unavoidable un- DC / ('X
certainty in the scale factor will only show up in the les' (b)

important case of poorer quality beams. Fig. 5. Expanded views of selected clip level curves from Figs. 1-5 over

the range E = 7% to f = 13%. Three suggested clip levels and the asso-

E. Pedestal Beams ciated scale factors for the TEM. mode are indicated.

Despite the reasonable range of error values indicated
by Figs. 1-5, one should be aware that there can always the very slow I/x 2 falloff of this profile at large x, the
be extreme beam profiles having very different values of value of q, actually diverges logarithmically. Hence, the
D,./a, both higher and lower, than the ranges indicated value of D,./, cannot even be defined without putting in
for a given choice of clip level in Figs. 1-5. Consider, some truncation of the sin 2 x/x 2 function at some large
for example, a beam profile consisting of two outer spikes but finite value of X.
or delta functions located at x = ± Ma with M > 1, each Still another not uncommon example would be a "ped-
containing just under ( of the total beam power, and two estal beam," which might be modeled as consisting of a
spikes at x = +a each containing 0.5 - E of the beam TEMo Gaussian primary beam with a Gaussian spot size
power. The normalized clip width for chip level E in this w, containing a fraction I - a of the total power, super-
case %ill be D,/a, = 2// + 2(M 2 

- l)f, which can imposed on a "pedt-stal" modeled as a second TEM00
be made as small as desired for M >> I. Altemative'y, beam with a spot size w1 containing the remaining t of
consider a beam profile with two outer spikes at .r = ±a the total beam power. High-power laser oscillators will
containing just over ( of the total power each. with all the sometimes produce beams of this general character, with
remaining energy in a narrow spike at x = 0. The nor- a central beam lobe of rather good qual;ty containing some
malized clip width in this case will be given by D,/a, fraction of the total beam pouwr, surrounded by a broad
I /e. which will be much larger than any of the values low pedestal containing the remaining power. (Such
shown in Figs. 1-5. beams are in fact of quite poor beam quality, despite their

Another bothersome case ;s the simple example of the well-formed cintral lobe.)
far-field pattern of a single slit. which has the general form Figs. 6 and 7 shuw clip level plots for a series of such
(at least in the elementary paraxial approximation) of l(x) pedestal beams: first for a fixed pedestal width ratio M -

sin2 x/.r2. The problem in this case is that, because of w,/w1 and varying fractional power oa, and then for fixed
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Fg6.Clip level plot similar to Figs. 1. 2. and 4 for a "pedestal" beam 0.m

in which the pedestal Gaussian is M =3 times wider than the central W /

Gaussian. with varying fractions a = 20, 40. 60. and 80% of the total oo
beam power in the pedestal. ~

Mode

Peesa "em Fig. 8. Fractional changes in the clip width to standard deviation ratio
a= 5% D,./a, versus fractional mode mixture for incoherent superpositions of La-

guerre-Gaussian modes. Results are shown for clip levels (a) = 8.5%
(where the 00 and 01* modes have the same scale factor) and (b) =01 10.0%. In each segment of the plots, the beam profile is an incoherent

Fig. [ 6.; / = Clip leve plot conidrsiofltira toentg Figs.n 1.eal a2on and hoiona afis as "peesal beamon m 0da6a~enpoie°tecnitn fa noeetm

in4 mixture of the two adjacent Laguerre-Gaussian mode profiles, with the

G o.aussia with varying fractions horioal axi a onea moves

bea 2oe fro one modetal patrnt0tenet

00 =V 10 ll.02%

0.0 2.0 4.0 the clip width and the standard deviation for the mixed
Dc a Iax mode will both change in a slightly different manner as

Fig. 7. Clip level curves for pedestal beams with 5% of the total beam the mixture ratio is changed; and the Dr/u ratio will also
power in the pedestal, with the pedestal Gaussian being a varying factor M change slightly even if it returns to the same value at both
= 2. 3. 4, and 5 times wider than the central Gaussian. end points. To illustrate this point, Fig. 8(a) and (b) shows

the fractional change in the D/o ratio, relative to the
TEM r Gaussian mode, for various incoherent binary

pedestal power a and varying width ratio M. The general mixtures of modes at the two different clip levels e =
conclusion is that over most of the clip level range, these d .6% and e = 10%. In each segment of these plots, the
beams have a Dr/D, ratio that falls below the TEMo beam profile is assumed to be an incoherent mixture of
value; and the scale factor errors in measuring these beams the two adjacent HG mode profiles, with the fractional
can become quite sizable for wide pedestals or pedestals percentage of each mode varying linearly as one moves
thai contain any significant fraction of the total power. from one intersection point to the next. The general con-
There is probably no simple way around this difficulty, clusion is that there is a small variation of the Drt , o ratio
except the practical answer of using a spatial filter in the with mode mixture ratio, even when the endpoints have
real laser beam to eliminate most of the pedesta, and then the same limiting value. This variation is in general so
measuring the remaining output beam after the spatial fll- small, however, that it will have negligible importance in
ter. In any event, the scale factor error for a pedestal beam affecting the accuracy of any practical measurement.
becomes sizable only for rawher poor quality beams.

Ill. SUMMARY
F. Mixed-Mode Gaussian Beams The curves in Figs. 1-8 should give a good indication

Finally, one might guess that if a clip level is chosen of the variationein D/a, likely to be encountered with
at which two different HG modes have the same scale fac- real laser beams, and thus provide guidance in selecting
tots (as at i = 1 1.6 or 8.5%) then an incoherent mixture a clip level for standardized knife-edge measurements.
of these two modes might have the same D,l/i value also. The primary conclusion of this paper is that any clip level
This turn out to be nearly butt if exactly true. If one in the range between D -- 8.5% and e 1i.6% could be
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about equally useful as a standard value for knife-edge the x-direction for an optical beam are given by
beam-width measurements. The exact clip level can be

chosen based on other considerations such as numerical = I(x y) dxdv
simplicity or experimental convenience. Smaller clip lev- J-o y and

els are probably less convenient experimentally, from
considerations of noise and detector sensitivity. Hence, 2 £ £21,dd. (2)
eitherc = 10% with a scale factor = 2.563, orE = 11.6% = x-J(xy)xy.
with a scale factor D,/q, = 2.39 might be equally useful.

The scale factor Dco, to be used for converting mea- The clip width in the x-direction for a given clip level f
sured clip widths D, into (approximate) values of a, for will then be given by D, = a, - al, where al and a2 are
real laser beams should, in any case, be the value appro the points at which
priate a TEM00 Gaussian beam. Proposals have been made
by some standards groups to define the half-width W, in dx y dv I(x, y) = EP0  and
the x-direction for a real laser beam to be Wr, 2a,. This "
half-width quantity for real laser beams would then match
up directly with the 1/e 2 half-width parameter or Gauss- Cd Idy-(x ) = (I - E P0 . (3)
ian spot size parameter w, = 2a, that is widely used for_,, d
TEMo0 Gaussian beams. If this proposal were adopted,
and if the 10-90% choice were also adopted as a standard If we consider only symmetric beam profiles for simplic-
for the clip level E, then the measured full width D = 2W ity, then al = a, = D,./2 and the clip level e can be re-
for a laser beam would be related to the measured clip lated to the clip width D, by
w idth by E -

D = 2W= 4D, = .561D = - /dx dy(xy). (4)
2.563

The knife-edge method of course automatically integrates
We note again that in making a measurement, one will over the y variation when the knife moves in the x-direc-
usually not know the modal content of the beam, so that tion, and we can drop the y variation for any cases where
one can only measure the clip width at a predetermined (x, y) is separable in the form I(x. y) = Jr(x) X I,( y).
clip level and then apply the predetermined scale factor Clip level formulas for the beams considered in this paper
to obtain an estimated value of the standard deviation or are then given by the following formulas.
other selected beam size parameter. Since at least some 1) Lowest-Order Hermite-Gaussian Mode: The clip
real lasers approach pure TEM~o behavior, often with level for the lowest-order HG0 mode profile 10(x) = exp
small amounts of TEM0 1 or TEM 10 mixed in, this ap- (-2x2 /w 2), or for the corresponding TEM~o or TEM00
proach will become exactly correct in the TEM~O limit. HG modes, is given by
Measurements using this approach will then become grad-
ually less accurate for higher-order or poorer-quality I -erf (22D (5)
beams, depending upon the exact beam profile. 2 N1 a,

There will always be extreme beam profiles for which
the error in converting from clip width to standard devia- 2) Next Higher-Order Hermite-Gaussian Mode: The
tion can become rather large. There appears to be no easy clip level for the HG n = I mode or for the corresponding
way around this problem. One can, of course. gain a sub- TEM10 , but not TEM 01, mode is given by
stantial amount of additional information by using the
knife-edge technique to record the complete profile of I - ,FJ3D' 2 N13D
transmitted intensity versus position, and then using this = 1 - ert2,,27u) +  2vr2,
information to determine the character of the mode profile
more accurately. But this requires considerably more data ,3D
handling and recording than the simple procedure of re- • exp (6)
cording a single clip width D, at a single standardized clip (2 ,/2 a)

level f.
3) The "Donut" Mode: This mode, which is often

seen in stable-resonator lasers in which the mode-con-
APPENDIX A trolling aperture is made slightly too large. can be viewed

CLIP LEVEL FORUMIJLAS either as a Laguerre-Gaussian TEM *I mode with profile

The analytical clip level formulas for the modes dis- given by I(r. 0) = r exp I-2r2 /w21. or as the inco-
cussed in this paper are summarized in this Appendix. herent superposition of equal amounts of the TEM 10 and

Given an arbitrary transverse intensity profile (x. Y), TEM(, HG modes with profiles given by I,, = x- exp
the total beam profile P,) and the standard deviation a, in I-2(x2

+ V)/w-I and Il y- exp 1-2Wrx + y)iw
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In either case, the clip level is given by to evaluate the properties of these modes by numerical

I/ (TD IiDaDevaluation using a computer package such as Matlcna-
S1 D tica, and this was done to calculate the results in Figs. 2= - ftr c-- and 5.

(7) 10) Pedestal Beams: Consider a beam consisting of a
central TEM1 o Gaussian with spot size w, containing 1 -

4) "Ring" Mode (Asymptotic Hermite-Gaussian a of the total power, and a pedestal with spot size w,
Mode): As discussed in the text, the asymptotic limit for containing the remaining fraction ae of the total power.
an HG mode as n - c has the same properties in one The clip level is then given by
transverse dimension as does a narrow ring annulus beam Iva a(/as
in two dimensions. The D/au ratio as a function of clip e -I - (I - a) erf - a erf (13)
level for either case is given by 2 ( w., /

E = { - - -sin- (.) (8) where
77r i/2ri 

a = 1-a +M D,.
5) "Top hat" Mode.: A circular uniform-amplitude top - 2 2a, (14)

hat beam has clip level and clip width related by
V 2and M -w 2 /wt.

= I - -(0 + sin0cos0) (9)

where 0 - sin- (D/2oa). Anthony E. Siegman (S'54-M'57-F'66) was born in Detroit. MI. on No-
vember 23. 1931. He received the A.B. degree from Harvard University.

6) Uniform Slit or Rectangular Mode: A uniformly il- Cambridge. MA. in 1952. the M.S. degree in applied physics from the

luminated slit, or any form of equivalent rectangular beam University of California. Los Angeles. in 1954 under the Hughes Aircraft
Cooperative Plan, and the Ph.D. degree in electrical engineering from

scanned across either of its principal axes, will have the Stanford University. Stanford. CA. in 1957.
form Since then he has been on the faculty at Stanford where he directs an

active research program in lasers and their applications. He currently holds
lr D . the Burton J. and Ann M. McMurtry Professorship of Engineering in the

E = I - , (10) Departments of Electrical Engineering and (by courtesy) of Applied Phys-
2 ics and is presently with the Edward L. Ginzton Laboratory at Stanford.

He has made many contributions to the fields of microwave electronics.
7) "Diamond" Mode: A "'diamond" profile (a uv,- traveling-wave tubes, laser devices, and lasers applications, and has writ-

formly illustrated square beam rotated by 450) obeys the ten a highly regarded textbook. Laisers (University Science Books. 1986).
formula He has been a consultant to numerous industrial and government labora-

tories, and served for six years on the Air Force Scientific Advisory Board.

2 Dr. Siegman is a Fellow of the Optical Society of America and the Amer-
(i I) ican Physical Society, and a member of the National Academies of Engi-

2 neering (1973) and of Science 1988). In 1980 he received the R. W. Wood
Prize of the Optical Society (if America for the invention (if the unstable' Fu optical resonator, and in 1987 was awarded the Frederic Ives Medal of the

8) "Picture Frame Mode: A very thin square annu- Optical Society of America for overall distinction in optics.
lus (the square analog of the ring mode) obeys the formula

D (. 1 6 X(2-4,). 0.25_<,_0.5
(- E 0 12) M. w. Sasnett. photograph and biography not available at the time of

o, Q 6 , ( :- 0.25. publication.

9) Higher-Order Hermite-Gaussian Modes. Analytic
formulas can be developed if necessary for higher-order T. F. Johnston, Jr.. photograph and biography not available at the time

HG modes with n 2. but in most cases it proves simpler ot publication.



/
Single Pulse Laser Beam Quality Measurements Using a CCD Camera System

J. A. Ruff and A. E. Siegman

Stanford University, Edward L. Ginzton Laboratory, Stanford, California 94305-4085

We have assembled a CCD-camera-based system that is capable of measuring laser beam

quality on a single-shot pulsed basis. The system has been tested using a pulsed HeNe laser

beam with added spatial distortion.

The concept of beam quality as a measure of the multi-mode or "times-diffraction-

limited" character of a laser beam has been of interest since the early days of the laser field. 1

Only recently, however, has there begun to be convergence on standard methods for defining and

measuring laser beam quality.2 In the past few years commercial instruments for measuring

laser beam quality on a CW basis have become available and have been found to yield useful

new information on laser physics.3 Our device enables similar investigations of pulsed lasers.

We have developed a CCD-camera-based system that makes single-shot beam quality

measurements on pulsed laser sources. The system employs three CCD cameras, a Macintosh

computer and three video frame grabber boards, as shown in Fig. 1. The cameras monitor the

transverse beam profile as the beam propagates through a small beam waist formed by a high

quality lens. The frame grabber boards convert, or digitize, the video images of the laser beam

into arrays of numbers that the computer uses to calculate beam widths at each plane. The

combination of the beam waist size and the far-field divergence of the laser beam provides a

measure of the beam quality.

To ensure an accurate measurement of beam quality the samples of the transverse beam

profile must be taken near the beam waist and several Rayleigh ranges away from the waist.

Use of a short Rayleigh range enables measurement in a confined laboratory. In our experiments

a high quality 10 cm focal length lens produces a very small waist with a typical Rayleigh



range of a few centimeters.

The transverse profiles are measured with standard Sony SSC-D5 CCD cameras. The

frame grabber boards quantize the continuous video information from the cameras into a finite

number of light intensity samples (pixels on the computer screen). They also quantize the

intensity at each sample into a finite number of levels. To reduce quantization error, each

transverse beam image should fill as much of the area of its camera's CCD array as possible

without overflow. Also, the intensity should be as great as possible without saturating the

camera. If only 10% of the maximum range of intensity levels is used, the measured beam width

can be in error by as much as 5%. Below that, the measured width falls quickly with intensity.

One CCD camera coupled with a microscope objective monitors the transverse profile of

the laser beam at the small waist formed by the focusing lens (Fig. 1). The microscope objective

allows measurement of waists as small as a few microns. The distance between the camera and

the microscope objective is fixed so that objectives can be easily interchanged and the

magnification simply read off the objective in use. As mentioned above, the power of the

objective must be chosen to project the beam waist onto the largest possible area of the CCD

detector. For example, with 256 intensity levels and a near-gaussian laser beam, the gaussian

spot size should be roughly 30% of the short edge of the camera's CCD array. At this size, with

the intensity at the center of the beam just below saturation, the intensity at the edge of the

camera will be below the lowest quantization level.

The exact position of the beam waist is located by moving the camera and microscope

objective as a unit, as in a video microscope4 , and making measurements on repeated shots of the

pulsed laser, looking for a minimum spot size. In the case of an astigmatic beam, the two

transverse axes must be measured separately. During positioning of the microscope assembly,

the computer calculates a continuous rough estimate of beam width using a rapid width

2



measurement technique, such as a simulated knife scan. A more accurate width measurement

algorithm is used during data collection.

The two other cameras monitor the transverse beam profile at varying distances beyond

the waist (Fig. 1). As the laser beam spreads, one of the cameras is moved to a position where

the laser beam just fills the entire CCD array, as mentioned before. The third camera is placed

somewhat closer, to obtain a measurement at a different distance from the beam waist. The

beam profile on this camera will not quite fill the array.

Any imperfect optical components in the optical path will, of course, change the beam

quality we are attempting to measure. Our design reduces the number of these components in the

measuring device to a 10 cm focal length lens, a microscope objective and two high-quality

beamsplitters (Fig. 1). The CCD cameras were used without lenses. In general, a variable

neutral density filter will also be required to provide control of the over-all intensity. In our

testing of this system, however, we are able to control the average intensity of the beam by

changing the pulse length. Separate neutral density filters are not required for each camera if

the beamsplitters are selected so that the maximum (spatial) intensity is just below saturation

on each camera. In our set-up the first beamsplitter reflects roughly 33% and the second

beamsplitter reflects roughly 50% (Fig. 1). Slight adjustments of a camera's location can be used

to fine-tune peak intensity since maximum intensity drops as the laser beam diverges.

The integration/storage capacity of CCD arrays combined with the ability to

simultaneously capture a video frame from three independent cameras allows a measurement to

be made from a single pulse of laser light, once the waist location has been found. The Sony

SSC-D5 cameras are locked in synch and run continuously. A pulse of light from the laser

triggers the Data Translation QuickCapture video frame grabber boards to capture the next

frame in the video sequence from each camera. Those frames, which each of the three boards

3



converts into an image, contain the transverse laser beam profiles at the cameras. Each image is

composed of 640 x 480 pixels using 256 grey levels. Laser pulses of interest will in general be

short compared to the single frame integration time of the CCD cameras (17 ms).

The effective beam widths can then be determined in software in any of several

different ways, such as simulation of a knife edge scan (for any clip level), which is very fast,

or direct computation of variances, which is more theoretically correct. Fast assembly language

routines are used for all computations, including determination of principal axes, to provide

immediate feedback on beam quality. The beam quality is determined from the product of the

standard deviation of the transverse beam profile at the beam waist aO, and the standard

deviation oz, of the beam profile at a known distance away, z, in the form 2

M2 = 4iOyOzzX

The two far-field cameras provide two measurements of the M2 value.

It would also be possible to measure beam quality by finding the best-fit parabola

through the beam widths of all three transverse profiles. However, this method is very

sensitive to small errors in the size of the beam waist. Thus, it is much better to find the beam

waist independently and calculate the best-fit parabola while holding the beam waist

constant. In our case, this would amount to little more than averaging the two values of M2 as

obtained by the two cameras as outlined above.

We have tested the operation of this system using single pulses from a HeNe laser with

various artificial distortions added, and are now beginning a series of measurements on other

pulsed laser sources. To simulate a distorted pulsed laser source, a CW HeNe laser beam was

sent through an acousto-optic modulator and a prism pair. The AO modulator produces 62;1s

square-wave pulses, and the prism pair elongates and slightly distorts the beam along one axis.

Figure 2 shows the three transverse profiles taken during a single pulse. The principal axes and
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beam widths as measured by the computer have been added to the figure. The lengths of the

ellipse semiaxes are equal to the laser beam image variances. The principal axes, as calculated

by the computer, differ from each other by about one degree. We assume that this is due to

small alignment errors and not to the laser beam being nonorthogonal 5. The fringes seen in the

transverse profiles do not greatly effect the value of M2 if the power in the fringes is relatively

small. The astigmatism of the measured laser beam was negligable.

The distance from the beam waist to camera B in this case was Zb = 124 + 1 mm (Fig. 1).

The distance from the beam waist to camera C was zc = 173 + 1 mm. A single pixel measures 13.4

gm on a side. At the beam waist the pixels of camera A are the same, but a 40x microscope

objective makes the effective length 0.335 pm on a side. Repeated measurements on different

pulses from the same laser give variances which differ by roughly one pixel.

The measured beam widths were:

Camera A (waist): cOx = 75 pixels (25.1 P.m) caoy = 21 pixels (7.04 pin)

Camera B: (Ycx = 23 pixels (308 Pn) acy = 67 pixels (898 gm)

Camera C: Obx = 32 pixels (429 pn) a'by = 97 pixels (1300 pm)

From this data, using the previous equation, the calculated M2 values are:

camera A (waist) and camera B: Mx2 = 1.24 My 2 = 1.01

camera A (waist) and camera C: Mx2 = 1.24 My 2 = 1.05

The two cameras agree to within about 5% of each other.

We expect to extend these measurements to other pulsed laser sources, such as pulsed

semiconductor diode lasers and Q-switched diode-pumped lasers. Given the interesting

phenomena already found when examining the beam quality of cw laser sources for different

ranges of operation,3 we expect to find similarly interesting results in the modal and beam-

development properties of pulsed laser sources.
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Figure Captions

Fig. 1. Laboratory setup for measuring Beam Quality of Pulsed lasers.

Fig. 2. Transverse beam profiles of a single laser pulse.
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Enhanced Schawlow-Townes linewidth in lasers

with nonorthogonal transverse eigenmodes

Paul L. Mussche and A. E. Siegman

Edward L. Ginzton Laboratory, Stanford University
Stanford, California 94305-4085

ABSTRACT

A recent reformulation of the laser field equations, using the true modes of the laser cavity and
including a noise polarization term to account for spontaneous emission, shows that conventional
understanding of amplifier noise figure, oscillator linewidth, and oscillator build-up time needs to be
modified for laser amplifiers or oscillators with nonorthogonal transverse eigenmodes. Gain-guided
lasers and unstable-resonator lasers in particular have nonorthogonal transverse modes, and hence
exhibit unconventional noise behavior. One important consequence of this theory is the appearance
of an excess spontaneous emission factor (the "Petermann factor") which multiplies the well-known
Schawlow-Townes formula for the laser linewidth. This factor can be substantially greater than unity
for unstable resonators with large magnification or Fresnel number. We discuss our investigations of
the consequences of the nonorthogonality of the transverse eigenmodes, especially on laser linewidth
in unstable-resonator lasers. We believe that the results of these investigations axe important
where the temporal coherence properties of the laser are of interest, namely in coherent optical
communications, spectroscopy, optical wavelength standards, and also in the injection seeding of
pulsed high-power unstable resonator lasers. Extensive calculations of the excess noise factor in real
hard-edged unstable resonators have been carried out using a virtual-source approach to calculate
the exact unstable-resonator eigenmodes. An experiment is also being carried out to demonstrate
the linewidth enhancement in a small diode-pumped geometrically unstable laser oscillator.

1. INTRODUCTION

In many applications, understanding laser linewidth is an important consideration for example
for the design of coherent optical communication schemes, for spectroscopy (when investigating
fundamental properties of materials), and for the use of lasers in gravity wave detection using
interferometers. The fundamental source of laser linewidth is spontaneous emission noise which is
the unavoidable process accompanying stimulated emission. It is this contribution to laser linewidth
we are interested in as opposed to external noise contributions which depend on the environment
in which the ideal laser with spontaneous emission noise is imbedded.

Let us now turn our attention to laser resonators. It is well known that unstable resonator
lasers have several advantages over stable resonator lasers, in particular good transverse mode dis-
crimination and large gain volume. Two examples of practical lasers built with unstable resonators
are CO2 lasers and some Q-switched Nd:YAG lasers. The property that we are particularly inter-
ested in is that the modes of unstable resonators are nonorthogonal and, as we shall describe in this
paper, this has direct bearing on the fundamental linewidth of the laser.

Note that for most lasers, the environmental or external noise sources typically dominate the
contribution due to spontaneous emission. An important exception is the semiconductor laser whose
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linewidth is dominated by spontaneous emission noise. We can therefore anticipate that by building
semiconductor lasers with unstable resonators or, if more generally these semiconductor lasers have
nonorthogonal eigenmodes, they will exhibit excess spontaneous emission noise properties which
bear directly on their fundamental linewidth.

Note that when we say "quantum linewidth" or "Schawlow-Townes linewidth" or "fundamental
linewidth" of a laser we mean the spontaneous emission noise linewidth.

We shall first review the orthogonality properties of modes in lasers, then outline the theory of
excess quantum noise, and give some numerical results for the excess quantum noise for two types
of lasers, and follow by a discussion of experimental issues involved in trying to measure the excess
quantum noise.

2. MODES IN RESONATORS

We wish to give some details concerning resonator modes and their properties in order to avoid
referring the reader to a large collection of papers discussing one or another aspect of the topic.
(See reference 1 for background.)

Consider the unstable optical resonator in Fig. 1. We define a reference plane in the resonator
which, for convenience, will be taken as the plane transverse to the optic axis just before the output
coupling mirror. Note that in the paraxial approximation, the output mirror is considered to be of
negligible width. We mean by "mode" or "eigenmode" of this resonator any field distribution which
will reproduce after one round trip through the resonator. In order to make the picture clearer, it is
useful to consider the following lensguide equivalent where the resonator is unfolded and the mirrors
are rcplaced by lenses. Also, coupling to the outside is denoted by the presence of an absorbing wall
(representing radiation going out to infinity) as shown in Fig. 2. A field distribution u at plane z, t-,
an eigenmode if when propagated to plane z2 (one round-trip through the resonator) it reproduces
its shape both in amplitude and phase, so that

VP, = Z2 u(,z)

where T is the transverse dimension. Note that u is the slowly varying part of a field uei(kz - t).

The constant -y is the eigenvalue associated with the eigenmode u. The mode u obeys the paraxial
wave equation with appropriate boundary conditions

In order to understand the orthogonality property of modes it is more instructive to consider
the integral equation obeyed by u. This is nothing else but the Fresnel diffraction integral

V2 (j2 ) = LA K( 2,1 U1( 1

where A is the aperture area, and where the kernel K depends on the optical elements between the
reference planes at z, and z 2 and the integral is taken over tite aperture in the equivalent lensguide.
We write ul(31) as a shorthand for ul(9 1 ,zl), and likewise for v2 . For simplicity of argument,
we will consider the one-dimensional case where 3 = x and -2 = y. This choice is by no means
restrictive, but it makes the notation easier and also, for the two-dimensional case, it suffices to



Fig. 1. Positive branch hard-edge unstable resonator with diffractive output coupling

Fig. 2. Lensguide equivalent of the resonator shown in Fig. 1. The arrows represent the to.ward
propagating eigenwave. The reference planes 1 and 2 are located just before the absorbing walls.



view x as the vector (xI, x 2) and y as the vector (Y1, Y2). So we write the integral equation for the
mode as

v(y) = J K(y,x)u(x)dx

A mode of the resonator is the self-reproducing field u such that

v(y) = -Yu(y)

or

-fu(y) =fK(y,x)u(x) dx

so that u is an eigenmode of the integral operator which transforms u(x) into f K(y, x)u(x) dx
with its corresponding eigenvalue y.

Let us suppose that {un}, {Yn} is the collection of eigenmodes and corresponding eigenvalues.
We define the scalar product (Urn, U,) by

(Um,Un) JU-'(x)Un(x)dx

where the integral is taken over the aperture. In many cases in physics the eigenrmodes are orthog-
onal, i.e.

f1 n-m
(\m,Un) = mn =  n m

but in the case of unstable resonators this is not the case.

(Urn, un) # ,n for unstable resonators

It is possible however to define a set of modes {vm} which is orthogonal to the set of modes {um}

(Vm, Un) = 6nm

It turns out that these modes are the eigenmodes of the integral equation

- Vm( = J K*(xy)v.(x)dx

Note that the arguments of K are switched and it is complex conjugated. The field vm is called an
adjoint mode of urn. In laser resonators another definition is used: we define the mode Cm as the
solution to

IYr~m J K(x,y)0m(x)dx (no complex conjugate)

So that Om = v , and it obeys the biorthogonality property

(Or, Un) J f m(x)u.(x)dx =6n



The reason for using this definition is that 0,,, can be interpreted as the eigenxmode of the resonator
propagating in the opposite direction (with the optical axis reversed).

It turns out that for optical resonators in the paraxial approximation we have

0.(x) = /m um(x)e
- ia Z' 2

where the constant a is given for a given resonator. If the reference plane is a symmetry plane of
the resonator we have a = 0, and then the biorthogonality relation becomes

I Um(x)un(x)dx = 0 m n (no complex conjugation)

It is necessary also to define a normalization of the modes. We will choose

LO Ium(Z)1
2 dx = 1

and

IA m(X)nun(x)dx 
1

But from the previous equation we have that

LA fmum(x)e- ia 2 um(x)dx=1

so 1

fA M~xe~z dx

It is easy to show that

L. ltm(X)12dx = I1 2 Al (X)12d

so we have finally a set of eigenmodes {um } with corresponding eigenvalues IQYm} such that

-,.u,,(y) = A K(y, x)u,,(x) dx

with the normalization
A iu(x)l2dz = I Ym 12

and ', such that

'km(X) = Um axxe 2

fA urnd(x')e - " '2 dx'
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The quantity we are ultimately interested in is the excess noise factor Kmm defined by

K.. I -n(x)Om(x)dx

And from the above relations we have

_M fAu ,(x)um(x)dx

IfA M~xe~xdI

which at a symmetry plane simplifies to

K__m - fA IU(X)l2dX
=fAu(X) 2dx (symmetry plane)

3. EXCESS NOISE FACTOR THEORY

We shall describe in words the derivation leading to the excess noise factor. For the full theory
we refer the reader to reference 2.

The gist of the theory is to go from Maxwell's equations for the electric field to the equation
for the photon number in a single lasing mode by an expansion of the field in the true resonator
eigenmodes (longitudinal and transverse). Conventional theories assume an orthogonal mode de-
composition using the modes of a closed cavity with no losses. The laser resonator is inherently
an open resonator and cannot be correctly approximated by a closed resonator especially for lasers
with diffractive output coupling such as provided by unstable resonators.

The central result we are interested in is the equation of motion for the photon number in a
single lasing mode

dn
- = KN2(n + K) - rNln -

We recognise the familiar stimulated emission term KN2n (K is a coupling constant), the stimulated
absorption -KN n, and the photon loss "ycn. The spontaneous emission is given by tcN 2K which
is different from the conventional result KN2 (K replaced by 1). The factor K depends directly on
the orthogonality property of the modes. It is composed of a "longitudinal" part

L 
) 2

I% _y ol 12 l(1/jbo2 )

and a "transverse" part

KT o(x)o(x) dx

where 0o is the backward-propagating mode associated with the lasing mode uo.

The factor KL is close to unity except for resonators with very large output coupling. It is
based on the nonorthogonality of the longitudinal modes of the laser. The factor KT is close to unity



S *

for stable resonator lasers and can be much larger than unity (as we shall see later) for unstable
resonator lasers which have strongly nonorthogonal eigenmodes.

I. QUANTUM LINEWIDTH

The Schawlow-Townes linewidth or quantum linewidth of the laser is determined by the amount
of spontaneous emission into the lasing mode. If the laser has nonorthogonal eigenmodes we conclude
that the amount of spontaneous emission in the lasing mode is larger by a factor K than predicted
by a conventional laser theory based on an orthogonal mode expansion. We therefore expect that
the quantum linewidth of the laser will be increased by the same factor. The expression for the
laser linewidth is then

27r2aw 2ALL= .

P ,

The first two terms represent the conventional laser linewidth depending on the cold cavity linewidth
Av, and the output power P. We should note that in general, two more factors may appear in
the above expression, namely the incomplete inversion factor N 2/(N 2 - N1 ) (important for 3-level
lasers) and the linewidth enhancement factor (1 + a2) for lasers exhibiting AM to FM noise coupling
such as semiconductor lasers. 3 The excess spontaneous emission factor K is then the product of the
longitudinal factor KL and the transverse factor KT.

The longitudinal (KL) factor has been investigated experimentally by Hamel and Woerdman,4

and is important for lasers with very large output couplings. We are particularly interested in the
transverse (KT) factor because it is greater than unity for unstable resonator lasers.

5. EXCESS NOISE FACTOR: NUMERICAL PREDICTIONS

5.1. Variable reflectivity mirror laser

We have investigated the case of variable reflectivity mirror (VRM) lasers partly because such
lasers are increasingly popular. Also, in the case of a gaussian reflectivity profile, the eigenmodes
and eigenvalues can be computed analytically. Detailed computations can be found in reference
5, but we shall summarize the essential features here. Figure 3 shows a plot of the excess noise
factor of the lowest loss mode in a VRM resonator laser as a function of the geometrical stability
parameter m (the half-trace of the round-trip ABCD matrix representing the resonator). In the
stable resonator region (Im) < 1) the excess noise factor is essentially unity so that there is no
excess noise. For a flat-flat resonator (m = 1), the excess noise factor is equal to 2, and in the
unstable resonator region the excess noise factor increases very rapidly and reaches a value of 100
at a magnification M (M = rn + v/mT2 - 1) of 1.6 for this particular case. We conclude that VRM
unstable resonator lasers can exhibit very large excess noise factors.

5.2. Hard-edged unstable resonator laser

In this case, the eigenmode problem cannot be solved analytically, but we have computed
the excess noise factor using an efficient algorithm called the virtual source method which allows
generation of plots of the excess noise factor without having to rely on standard algorithms (the
Fox-Li method or Prony method) which would be much more time-consuming.
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Fig. 3. Power loss 1 - 1712 in percent per round trip and excess noise factor K plotted versus
geometrical magnification for the lowest-order Hermite-gaussian mode in a VRM cavity with a ratio
of gaussian aperture to confocal spot size of wga/wcf = 5 or gaussian Fresnel number Ng F- 8.
The horizontal scale variable in the half-trace parameter m for 0 < m < 1, and the geometrical
magnification M = m + v~/7n- 1 for m > 1.
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Fig. 4. Power loss and excess noise factor versus effective Fresnel number tr a hard-edged strip
unstable resonator with a magnification of 4.



We plot here power losses and the excess noise factor as a function of the effective Fresnel
number in the resonator (i.e., as a function of output coupling mirror diameter, all other parameters
being kept constant). Figure 4 shows how the excess noise factor is "resonant" with the Fresnel
number in the same way as are the losses. This fact is typical of hard-edged mirror resonators.
Again, we see that the excess noise factor can reach very large values.

6. EXPERIMENTAL CONSIDERATIONS

We are currently setting up an experiment to measure the excess noise factor using a diode-
pumped monolithic Nd:YAG laser system (Fig. 5). The rod has a flat mirror on one end and a
negative curvature mirror on the other. It is thus inherently geometrically unstable. The rod is
end-pumped by a single mode high-power diode laser which induces a lasing mode in the rod by the
mechanism of gain-guiding. Although the theory presented above makes the assumption that the
gain is uniform throughout the laser, we anticipate an effect on the excess of noise from the mirror
curvature.

For the noise measurement we are setting up a Pound-Drever-type noise measurement scheme6

where a Fabry-Perot cavity is locked to the laser and frequency noise is observed at frequencies
beyond the locking bandwidth, i.e., where the laser is free-running and where external noise sources
have become negligible, leaving the spontaneous emission noise.

We have observed lasing action in our diode-pumped rod system at a rod temperature of 80K
when the gain is high enough to go above threshold and to avoid multi-longitudinal mode oscillation
by narrowing of the gain curve (hence avoiding spatial-hole burning).

We wish to stress that this laser scheme is interesting in itself because it has good transverse
mode discrimination in a large gain volume, so that it is not limited by the problem of stable rod
designs where all the pump power has to be mode matched into the fundamental mode of the rod
laser. Figure 6 shows the near-field beam emanating from the rod.

7. CONCLUSIONS

Unstable resonator lasers can exhibit large deviations from standard predictions for the fun-
damental laser linewidth due to eigenmode nonorthogonality. Indeed, the standard expression for
the laser linewidth due to spontaneous emission noise needs to be multiplied by a so-called "excess
spontaneous factor." We have performed analytic and numerical computations for the excess noise
factor, and conclude that it can be very much larger than unity for unstable resonators. Note that
the excess noise factor theory was first studied in the context of gain-guided semiconductor lasers
by Petermann. 7 Therefore, it is also called the Petermann factor.

We are currently investigating the excess noise factor experimentally, and have demonstrated
what is to our knowledge the first diode-pumped monolithic unstable resonator Nd:YAG laser
system.



Pump beam Nd:YAG laser rod Output laser beam

Fig. 5. Optical set-up of the diode-pumped monolithic unstable resonator Nd:YAG rod laser.
The rod is 3 mm long with a flat mirror at one end (HR at 1064 nm and HT at 809 nm) and a -10
cm radius mirror at the other end (95% reflector at 1064 nm). The material is 1% doping Nd:YAG.

Fig. 6. Near field of the bear emanating from the rod. On the left the laser is below threshold
and on the right the laser is above threshold. Notice a change in vertical scale by a factor of 1000
and a change in horizontal scale by a factor of 3/4. The ring of light in the left pattern is the glow
from the edge of the laser rod.
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